深度优先搜索 + 奇偶剪枝【HDU 1010】

Tempter of the Bone

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 109270    Accepted Submission(s): 29694
 

 

Problem Description

 

The doggie found a bone in an ancient maze, which fascinated him a lot. However, when he picked it up, the maze began to shake, and the doggie could feel the ground sinking. He realized that the bone was a trap, and he tried desperately to get out of this maze.

The maze was a rectangle with sizes N by M. There was a door in the maze. At the beginning, the door was closed and it would open at the T-th second for a short period of time (less than 1 second). Therefore the doggie had to arrive at the door on exactly the T-th second. In every second, he could move one block to one of the upper, lower, left and right neighboring blocks. Once he entered a block, the ground of this block would start to sink and disappear in the next second. He could not stay at one block for more than one second, nor could he move into a visited block. Can the poor doggie survive? Please help him.
 

 

Input

 

The input consists of multiple test cases. The first line of each test case contains three integers N, M, and T (1 < N, M < 7; 0 < T < 50), which denote the sizes of the maze and the time at which the door will open, respectively. The next N lines give the maze layout, with each line containing M characters. A character is one of the following:

'X': a block of wall, which the doggie cannot enter;
'S': the start point of the doggie;
'D': the Door; or
'.': an empty block.

The input is terminated with three 0's. This test case is not to be processed.
 

 

Output

 

For each test case, print in one line "YES" if the doggie can survive, or "NO" otherwise.
 

 

Sample Input

 

4 4 5
S.X.
..X.
..XD
....
3 4 5
S.X.
..X.
...D
0 0 0
 
Sample Output
NO
YES
 
 
思路:
(1)题目要求 正好在T时刻走出迷宫,所以仅仅是BFS不行,BFS可以判断能否在T时刻内走出(<=T),可以用作 剪枝
    如果仅用BFS,下面的测例通不过
    4 2 6
    .D
    .X
    .S
    ..
    0 0 0
    本题我只用了DFS+剪枝,通过了
(2)在进行DFS前可以进行 奇偶剪枝,具体讲解 点击打开链接
(3)回溯,因为从起点到达终点的路径不唯一,最短的路径不一定满足要求,可能需要再附加一些步数,所以中途需要恢复
(4)在迷宫四周加墙,简化了边界的判断
(5)DFS的过程中,找到符合条件的即可退出
 
 

 

#include<iostream>
#include<cstdlib>
#include<cstring>
using namespace std;
const int MAX_N = 10,MAX_M = 10;
char maze[MAX_N][MAX_M];
int  visit[MAX_N][MAX_M];
int dx[4] = {1,0,-1,0},dy[4] = {0,1,0,-1};
int N,M,T;
int sx,sy,gx,gy;
bool flag;

void InitMaze()
{
    for(int i = 0; i < N+2; i++)
        maze[i][0] = maze[i][M+1] = 'X';
    for(int i = 0; i < M+2; i++)
        maze[0][i] = maze[N+1][i] = 'X';
}

void dfs(int x,int y,int t)
{
    visit[x][y] = 1;

    if(maze[x][y] == 'D')
    {
        if(t == 0)
            flag = true;
    }
    else
    {
        for(int i = 0; i < 4; i++)
        {
            int nx = x + dx[i],ny = y + dy[i];
          //  cout << '[' << nx << ',' << ny << ']' << " ";
            if(maze[nx][ny] != 'X' && !visit[nx][ny])
            {
                dfs(nx,ny,t-1);
                if(flag)
                    return;
            }
        }
    }
     visit[x][y] = 0;//回溯
    // cout << '{' << x << ',' << y << '}' << endl;
}

int main()
{
    while(1)
    {
        cin >> N >> M >> T;
        if(!N && !M && !T)
            break;
        InitMaze();
        for(int i = 1; i <= N; i++)
        {
            for(int j = 1; j <= M; j++)
            {
                cin >> maze[i][j];
                if(maze[i][j] == 'S')
                    sx = i,sy = j;
                if(maze[i][j] == 'D')
                    gx = i,gy = j;
            }
        }

        flag = false;
        int m = abs(gx-sx) + abs(gy-sy);//从起点到终点需要的最小步数
        if(m%2 == T%2)//奇偶剪枝
        {
            memset(visit,0,sizeof(visit));
            dfs(sx,sy,T);
        }
        if(flag)
            cout << "YES" << endl;
        else
            cout << "NO" << endl;
    }
    return 0;
}
 

 

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值