GAN 学习笔记(一)
- 生成网络简介
生成网络是无监督学习中的一种,它的目标是‘凭空’生成一些数据,用没有意义的数据生成出有意义的作品。比如生成一些假的图像。
生成对抗网络(Generate Adversarial Network,GAN)是由Goodfellow博士在2014年提出的一种生成模型,提供了一种生成高质量数据的深度学习方法,只需要少量带有标记的数据,便可以通过生成网络与判别网络之间的竞争获得高质量数据。
- 对抗网络思想
生成对抗网络主要由两个部分组成,一个是生成器 G(Generator),另一个是判别器 D(Discriminator)。
生成器的输入参数为一些无意义的噪声,并以此生成一个样本。判别器的作用则是判断生成器生成的一张图片是否是真实图片,如果图像是真,即输出「1」,否则输出「0」。在此过程中,生成器为了欺骗判别器,它会逐步更新参数以使生成的样本尽量拟合真实图片,而判别器为了能够更加精准的识别出样本是否真实,它也会逐步学习真实图片与生成图片之间的差异,并以此更新网络参数。在生成器与判别器的相互博弈之中,生成的样本图片逐渐接近真实图片,最终生成对抗网络达到稳定状态。
总之,基于 GAN 的图像生成器的过程如下:
- 生成器生成图像,其中在训练初始阶段,大部分图像都是无意义的。</