- 博客(6)
- 收藏
- 关注
原创 深度学习入门(BP神经网络)
本篇主要讲解深度学习的基础BP神经网络,结合了其他博客内容。BP神经网络(反向传播神经网络)是一种用于监督学习任务。BP神经网络是深度学习的基础,是一种最基本的人工神经网络,它由输入层、多个隐层和输出层组成。BP神经网络通过反向传播算法来训练网络,即通过不断调整神经元之间的连接权重,使得网络的输出与标记数据之间的误差最小化。这种算法的核心思想是利用梯度下降法来更新网络中的权重,使得网络能够逐渐学习到输入数据之间的模式和关联性。BP神经网络在许多领域如图像识别、语音识别、预测分析等方面有广泛的应用。
2024-07-03 13:33:41 1210
原创 QT小知识
在设计Qt应用程序时,开发者应该确保耗时的操作和复杂的逻辑计算在工作线程中执行,以避免阻塞主线程,从而避免界面卡顿或无响应的问题.:所有与用户界面相关的操作,如绘制、响应用户输入(如点击、拖动等),都必须在主线程中执行。通过信号和槽机制,主线程可以与工作线程通信,传递数据,以及在必要时请求工作线程执行特定任务。:在应用程序启动时,主线程负责执行初始化工作,如设置窗口、加载资源等。:在某些情况下,主线程也可能执行一些轻量级的应用程序逻辑处理,尤其是那些不涉及耗时操作或不直接与用户界面交互的逻辑。
2024-07-10 10:30:07 155
原创 DSP中CLA的作用
在电源转换应用中,CLA通常被用于实现例如数字PID控制器、空间矢量调制(SVM)、直接转矩控制(DTC)等高级控制技术,这些技术要求快速且精确的数学计算来调节电压和电流,以驱动电源转换器(如逆变器、DC-DC转换器)以最优的效率工作。对于需要先进控制策略的电源转换应用,如有源滤波器、功率因数校正(PFC)或复杂的电机控制,CLA可以实现这些复杂算法的高效执行。在电源转换系统中,快速响应变化是至关重要的。通过使用CLA执行优化的控制算法,可以提高电源转换器的效率,减少能量损耗,并提高输出电源的质量。
2024-01-12 10:18:44 1685 1
原创 BP神经网络
BP神经网络是一种多层前馈神经网络,它通过反向传播算法进行训练。这种网络通常包括一个输入层、若干隐藏层和一个输出层。每一层由多个神经元组成,相邻层之间的神经元通过权重连接。BP神经网络是一种强大的机器学习模型,它通过反向传播算法有效地训练多层网络。虽然在某些任务中已被更先进的深度学习模型超越,但它仍然是理解深度学习核心概念的基石,并在许多领域内发挥着重要作用。
2023-12-28 15:34:29 540 1
原创 sigmoid和softmax在二分类上的区别
在二分类问题中,sigmoid 和 softmax 函数都可以用来预测类别概率,但它们在数学形式和概念上有所不同。
2023-12-26 08:49:58 923 1
原创 城市道路识别
城市道路识别包括上位机和下位机上位机通过计算机视觉OpenCV和YOLO5对城市道路和路牌进行自动识别,实现智能交通系统中的道路信息处理分和析;下位机使用STM32单片机控制4个电机及各个模块,实现小车各种运动。通过上位机和下位机通信,实现小车在道路中自动行驶。本文项目关于机器人及人工智能大的城市道路识别赛道。
2023-05-29 14:42:18 629 4
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人