【GoogLeNet】海洋生物识别


1. 项目准备

1.1. 问题导入

图像分类是根据图像的语义信息将不同类别图像区分开来,是计算机视觉中重要的基本问题。本实践使用卷积神经网络GoogLeNet模型构建深度学习模型,自动提取高质量的特征,来解决海洋鱼类识别的问题。

1.2. 数据集简介

本次实验使用的是台湾电力公司、台湾海洋研究所和垦丁国家公园在2010年10月1日至2013年9月30日期间,在中国台湾南湾海峡、兰屿岛和胡比湖的水下观景台收集的鱼类图像数据集。该数据集包括23类鱼种,共27370张鱼的图像,本次实验将取其中的90%作为训练集,剩下的10%作为测试集。

这是数据集的下载链接:Fish4Knowledge 23种鱼类数据集 - AI Studio

2. GoogLeNet模型

GoogLeNet模型是由Google团队在论文中提出的卷积神经网络,是2014年ILSVRC竞赛的冠军模型。相比于AlexNet模型,GoogLeNet模型的网络结构更深,共包括87层。尽管模型结构变得更复杂,但它的参数量仅为AlexNet模型参数量的1/10,这主要归功于它创新性地采用了Inception模块。如下图所示,Inception模块是一种多路并联结构,它能够提取并整合不同视野范围的特征,能极大地提升分类模型的性能。

GoogLeNet模型由多个模块串联而成,其网络结构如下图所示。以前的模型是将二维的卷积层输出的特征图直接拉成一维的全连接层输入,而在GoogLeNet模型中,作者在卷积层和全连接层之间插入一个全局平均池化层,直接生成一维的全连接层输入,这样做还能减少模型参数。需要注意的是,原始的GoogLeNet模型包含两个辅助分类器,由于辅助分类器在后续的深度卷积网络演化中并没有被再次使用,故我们去除了这两个辅助分类器。


3. 实验步骤

3.0. 前期准备

  • 导入模块

注意:本案例仅适用于PaddlePaddle 2.0+版本

import os
import zipfile
import random
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt

import paddle
from paddle import nn
from paddle import metric as M
from paddle.io import DataLoader, Dataset
from paddle.nn import functional as F
from paddle.optimizer import Adam
from paddle.optimizer.lr import NaturalExpDecay
  • 设置超参数
BATCH_SIZE = 64      # 每批次的样本数
EPOCHS = 5           # 训练轮数
LOG_GAP = 200        # 输出训练信息的间隔

INIT_LR = 3e-4       # 初始学习率
LR_DECAY = 0.5       # 学习率衰减率

SRC_PATH = "./data/data14492/fish_image23.zip"          # 压缩包路径
DST_PATH = "./data"                                     # 解压路径
DATA_PATH = DST_PATH + "/fish_image"                    # 实验数据集路径
INFER_LIST = [("./work/pm.jpg", "Pomacentrus moluccensis"),
              ("./work/ac.jpg", "Amphiprion clarkii")]  # 预测数据
MODEL_PATH = "GoogLeNet.pdparams"                       # 模型参数保存路径

LAB_DICT = {'fish_1': 'Dascyllus reticulatus', 'fish_2': 'Plectroglyphidodon dickii',
            'fish_3': 'Chromis chrysura', 'fish_4': 'Amphiprion clarkii',
            'fish_5': 'Chaetodon lunulatus', 'fish_6': 'Chaetodon trifascialis',
            'fish_7': 'Myripristis kuntee', 'fish_8': 'Acanthurus nigrofuscus',
            'fish_9': 'Hemigymnus fasciatus', 'fish_10': 'Neoniphon sammara',
            'fish_11': 'Abudefduf vaigiensis', 'fish_12': 'Canthigaster valentini',
            'fish_13': 'Pomacentrus moluccensis', 'fish_14': 'Zebrasoma scopas',
            'fish_15': 'Hemigymnus melapterus', 'fish_16': 'Lutjanus fulvus',
            'fish_17': 'Scolopsis bilineata', 'fish_18': 'Scaridae',
            'fish_19': 'Pempheris vanicolensis', 'fish_20': 'Zanclus cornutus',
            'fish_21': 'Neoglyphidodon nigroris', 'fish_22': 'Balistapus undulatus',
            'fish_23': 'Siganus fuscescens'}     # 用于将文件名和标签相对应

3.1. 数据准备

  • 解压数据集
    由于数据集中的数据是以压缩包的形式存放的,因此我们需要先解压数据压缩包。
if not os.path.isdir(DATA_PATH):
    z = zipfile.ZipFile(SRC_PATH, "r")   # 打开压缩文件,创建zip对象
    z.extractall(path=DST_PATH)          # 解压zip文件至目标路径
    z.close()
print("数据集解压完成!")
  • 划分数据集
    我们需要按1:9比例划分测试集和训练集,分别生成两个包含数据路径和标签映射关系的列表。
type_num, lab_dict = 0, {}          # 方便动物类别在字符型和整型之间转换
train_list, test_list = [], []           # 存放数据的路径及标签的映射关系
file_folders = os.listdir(DATA_PATH)     # 统计数据集下的文件夹

for folder in file_folders:
    lab_dict[str(type_num)] = LAB_DICT[folder]   # 记录标签和数字代号的对应关系
    imgs = os.listdir(os.path.join(DATA_PATH, folder))
    for idx, img in enumerate(imgs):
        path = os.path.join(DATA_PATH, folder, img)
        if idx % 10 == 0:      # 按照1:9的比例划分数据集
            test_list.append([path, type_num])
        else:
            train_list.append([path, type_num])
    type_num += 1
  • 数据预处理
    我们需要对数据集图像进行缩放和归一化处理。
class MyDataset(Dataset):
    ''' 自定义的数据集类 '''
    
    def __init__(self, label_list, transform):
        '''
        * `label_list`: 标签与文件路径的映射列表
        * `transform`:数据处理函数
        '''
        super(MyDataset, self).__init__()
        random.shuffle(label_list)      # 打乱映射列表
        self.label_list = label_list
        self.transform = transform        

    def __getitem__(self, index):
        ''' 根据位序获取对应数据 '''
        img_path, label = self.label_list[index]
        img = self.transform(img_path)
        return img, int(label)

    def __len__(self):
        ''' 获取数据集样本总数 '''
        return len(self.label_list)


def data_mapper(img_path, show=False):
    ''' 图像处理函数 '''
    img = Image.open(img_path)
    if show:     # 展示图像
        display(img)
    # 将其缩放为224*224的高质量图像:
    img = img.resize((224, 224), Image.ANTIALIAS)
    # 把图像变成一个numpy数组以匹配数据馈送格式:
    img = np.array(img).astype("float32")
    # 将图像矩阵由“rgb,rgb,rbg...”转置为“rr...,gg...,bb...”:
    img = img.transpose((2, 0, 1))
    # 将图像数据归一化,并转换成Tensor格式:
    img = paddle.to_tensor(img / 255.0)
    return img
train_dataset = MyDataset(train_list, data_mapper)  # 训练集
test_dataset = MyDataset(test_list, data_mapper)    # 测试集
  • 定义数据提供器
    我们需要分别构建用于训练和测试的数据提供器,其中训练数据提供器是乱序、按批次提供数据的。
train_loader = DataLoader(train_dataset,            # 训练数据集
                          batch_size=BATCH_SIZE,    # 每批读取的样本数
                          num_workers=0,            # 加载数据的子进程个数
                          shuffle=True,             # 打乱训练数据集
                          drop_last=False)          # 不丢弃不完整的样本

test_loader = DataLoader(test_dataset,              # 测试数据集
                         batch_size=BATCH_SIZE,     # 每批读取的样本数
                         num_workers=0,             # 加载数据的子进程个数
                         shuffle=False,             # 不打乱测试数据集
                         drop_last=False)           # 不丢弃不完整的样本

3.2. 网络配置

GoogLeNet模型的网络参数设置如下表所示:

class ConvBN2d(nn.Layer):
    ''' Conv2D with BatchNorm2D '''

    def __init__(self, in_channels: int, out_channels: int,
                 kernel_size: int, stride=1, padding=0):
        '''
        * `in_channels`: 输入通道数
        * `out_channels`: 输出通道数
        * `kernel_size`: 卷积核大小
        * `stride`: 卷积运算的步长
        * `padding`: 卷积填充的大小
        '''
        super(ConvBN2d, self).__init__()
        self.net = nn.Sequential(
            nn.Conv2D(in_channels, out_channels, kernel_size, stride, padding),
            nn.BatchNorm2D(out_channels)
        )

    def forward(self, x):
        return self.net(x)
class Inception(nn.Layer):
    ''' Inception v1 in GoogLeNet '''

    def __init__(self, in_channels: int, c1: int, 
                 c2: tuple, c3: tuple, c4: int):
        '''
        * `in_channels`: 输入通道数
        * `c1`: 第1路卷积层的通道参数
        * `c2`: 第2路卷积层的通道参数
        * `c3`: 第3路卷积层的通道参数
        * `c4`: 第4路卷积层的通道参数
        '''
        super(Inception, self).__init__()

        self.conv1 = nn.Sequential(
            ConvBN2d(in_channels, c1, 1, 1, 0),
            nn.ReLU()
        )
        self.conv2 = nn.Sequential(
            ConvBN2d(in_channels, c2[0], 1, 1, 0),
            nn.ReLU(),
            ConvBN2d(c2[0], c2[1], 3, 1, 1),
            nn.ReLU()
        )
        self.conv3 = nn.Sequential(
            ConvBN2d(in_channels, c3[0], 1, 1, 0),
            nn.ReLU(),
            ConvBN2d(c3[0], c3[1], 5, 1, 2),
            nn.ReLU()
        )
        self.conv4 = nn.Sequential(
            nn.MaxPool2D(3, 1, 1),
            ConvBN2d(in_channels, c4, 1, 1, 0),
            nn.ReLU()
        )

    def forward(self, x):
        y1 = self.conv1(x)
        y2 = self.conv2(x)
        y3 = self.conv3(x)
        y4 = self.conv4(x)
        y = paddle.concat([y1, y2, y3, y4], axis=1)  # Depth Concat
        return y
class GoogLeNet(nn.Layer):
    def __init__(self, in_channels=3, n_classes=2):
        '''
        * `in_channels`: 输入的通道数
        * `n_classes`: 输出分类数量
        '''
        super(GoogLeNet, self).__init__()
        # Conv2D(输入通道数,输出通道数,卷积核大小,卷积步长,填充长度)
        # MaxPool2D(池化核大小,池化步长,填充长度)

        self.block1 = nn.Sequential(
            ConvBN2d(in_channels, 64, 7, 2, 3),  # 64*112*112
            nn.ReLU(),
            nn.MaxPool2D(3, 2, 1),             # 64*56*56
        )
        self.block2 = nn.Sequential(
            ConvBN2d(64, 64, 1, 1, 0),           # 64*56*56
            nn.ReLU(),
            ConvBN2d(64, 192, 3, 1, 1),          # 192*56*56
            nn.ReLU(),
            nn.MaxPool2D(3, 2, 1),             # 192*28*28
        )
        self.block3 = nn.Sequential(
            Inception(192, 64, (96, 128), (16, 32), 32),      # 3a:256*28*28
            Inception(256, 128, (128, 192), (32, 96), 64),    # 3b:480*28*28
            nn.MaxPool2D(3, 2, 1),             # 480*14*14
        )
        self.block4 = nn.Sequential(
            Inception(480, 192, (96, 208), (16, 48), 64),     # 4a:512*14*14
            Inception(512, 160, (112, 224), (24, 64), 64),    # 4b:512*14*14
            Inception(512, 128, (128, 256), (24, 64), 64),    # 4c:512*14*14
            Inception(512, 112, (144, 288), (32, 64), 64),    # 4d:528*14*14
            Inception(528, 256, (160, 320), (32, 128), 128),  # 4e:832*14*14
            nn.MaxPool2D(3, 2, 1),             # 832*7*7
        )
        self.block5 = nn.Sequential(
            Inception(832, 256, (160, 320), (32, 128), 128),  # 5a:832*7*7
            Inception(832, 384, (192, 384), (48, 128), 128),  # 5b:1024*7*7
            nn.AdaptiveAvgPool2D(1),           # 1024*1*1
        )
        self.block6 = nn.Sequential(
            nn.Flatten(1, -1),                 # 1024
            nn.Dropout(p=0.4),
            nn.Linear(1024, n_classes),        # n_classes
        )

    def forward(self, x):
        x = self.block1(x)
        x = self.block2(x)
        x = self.block3(x)
        x = self.block4(x)
        x = self.block5(x)
        y = self.block6(x)
        return y
  • 实例化模型
model = GoogLeNet(in_channels=3, n_classes=type_num)

3.3. 模型训练

model.train()                # 开启训练模式
scheduler = NaturalExpDecay(
    learning_rate=INIT_LR,
    gamma=LR_DECAY
)                            # 定义学习率衰减器
optimizer = Adam(
    learning_rate=scheduler,
    parameters=model.parameters()
)                            # 定义Adam优化器
loss_arr, acc_arr = [], []   # 用于可视化

for ep in range(EPOCHS):
    for batch_id, data in enumerate(train_loader()):
        x_data, y_data = data
        y_data = y_data[:, np.newaxis]          # 增加一维维度
        y_pred = model(x_data)                  # 预测结果
        acc = M.accuracy(y_pred, y_data)        # 计算准确率
        loss = F.cross_entropy(y_pred, y_data)  # 计算交叉熵
        if batch_id % LOG_GAP == 0:   # 定期输出训练结果
            print("Epoch:%d,Batch:%3d,Loss:%.5f,Acc:%.5f"\
                % (ep, batch_id, loss, acc))
        acc_arr.append(acc.item())
        loss_arr.append(loss.item())
        optimizer.clear_grad()
        loss.backward()
        optimizer.step()
    scheduler.step()       # 每轮衰减一次学习率

paddle.save(model.state_dict(), MODEL_PATH)  # 保存训练好的模型

模型训练的结果如下:

Epoch:0,Batch:  0,Loss:3.50096,Acc:0.09375
Epoch:0,Batch:200,Loss:0.41797,Acc:0.90625
Epoch:1,Batch:  0,Loss:0.33822,Acc:0.89062
Epoch:1,Batch:200,Loss:0.04866,Acc:0.98438
Epoch:2,Batch:  0,Loss:0.04856,Acc:0.98438
Epoch:2,Batch:200,Loss:0.15580,Acc:0.96875
Epoch:3,Batch:  0,Loss:0.04368,Acc:0.98438
Epoch:3,Batch:200,Loss:0.03558,Acc:0.98438
Epoch:4,Batch:  0,Loss:0.00756,Acc:1.00000
Epoch:4,Batch:200,Loss:0.00995,Acc:1.00000
  • 可视化训练过程
fig = plt.figure(figsize=[10, 8])

# 训练误差图像:
ax1 = fig.add_subplot(211, facecolor="#E8E8F8")
ax1.set_ylabel("Loss", fontsize=18)
plt.tick_params(labelsize=14)
ax1.plot(range(len(loss_arr)), loss_arr, color="orangered")
ax1.grid(linewidth=1.5, color="white")  # 显示网格

# 训练准确率图像:
ax2 = fig.add_subplot(212, facecolor="#E8E8F8")
ax2.set_xlabel("Training Steps", fontsize=18)
ax2.set_ylabel("Accuracy", fontsize=18)
plt.tick_params(labelsize=14)
ax2.plot(range(len(acc_arr)), acc_arr, color="dodgerblue")
ax2.grid(linewidth=1.5, color="white")  # 显示网格

fig.tight_layout()
plt.show()
plt.close()

3.4. 模型评估

model.eval()                 # 开启评估模式
test_costs, test_accs = [], []

for batch_id, data in enumerate(test_loader()):
    x_data, y_data = data
    y_data = y_data[:, np.newaxis]          # 增加一维维度
    y_pred = model(x_data)                  # 预测结果
    acc = M.accuracy(y_pred, y_data)        # 计算准确率
    loss = F.cross_entropy(y_pred, y_data)  # 计算交叉熵
    test_accs.append(acc.item())
    test_costs.append(loss.item())
test_loss = np.mean(test_costs)    # 每轮测试的平均误差
test_acc = np.mean(test_accs)      # 每轮测试的平均准确率
print("Eval \t Loss:%.5f,Acc:%.5f" % (test_loss, test_acc))

模型评估的结果如下:

Eval 	 Loss:0.04160,Acc:0.99019

3.5. 模型预测

model.eval()                 # 开启评估模式
model.set_state_dict(
    paddle.load(MODEL_PATH)
)   # 载入预训练模型参数

for idx, (img_path, truth_lab) in enumerate(INFER_LIST):
    image = data_mapper(img_path, show=True)        # 获取预测图片
    result = model(image[np.newaxis, :, :, :])
    infer_lab = lab_dict[str(np.argmax(result))]    # 获取推理结果
    print("图%d的真实标签:%s,预测结果:%s" % (idx+1, truth_lab, infer_lab))

模型预测的结果如下:

图1的真实标签:Pomacentrus moluccensis,预测结果:Pomacentrus moluccensis

图2的真实标签:Amphiprion clarkii,预测结果:Amphiprion clarkii

写在最后

  • 如果您发现项目存在问题,或者如果您有更好的建议,欢迎在下方评论区中留言讨论~
  • 这是本项目的链接:实验项目 - AI Studio,点击fork可直接在AI Studio运行~
  • 这是我的个人主页:个人主页 - AI Studio,来AI Studio互粉吧,等你哦~
  • 【友链滴滴】欢迎大家随时访问我的个人博客~
  • 13
    点赞
  • 92
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
基于GoogLeNet实现鸟类识别任务可以通过以下步骤进行: 1. 数据准备:收集大量的鸟类图片,并将其分为训练集、验证集和测试集。确保每个类别都有足够的图像样本,并标注每个样本的类别。 2. 数据预处理:对图像进行预处理操作,包括图像增强、归一化、裁剪和缩放等。确保数据的一致性和准确性,使其适合输入到GoogLeNet模型中进行训练。 3. 搭建GoogLeNet模型:GoogLeNet是一个经典的卷积神经网络模型,由多层卷积层、池化层、全连接层和softmax层组成。按照GoogLeNet的网络结构,在代码中使用TensorFlow或Keras等框架搭建模型。 4. 模型训练:将准备好的训练集数据输入到GoogLeNet模型中进行训练。使用合适的优化算法(如Adam)和损失函数(如交叉熵),进行多轮迭代训练,以提高模型的准确性和泛化能力。同时,通过验证集数据对模型进行调优,防止过拟合现象的发生。 5. 模型评估:使用测试集数据对训练好的模型进行评估和验证。通过计算准确率、精确率、召回率和F1值等指标,来评估模型在鸟类识别任务上的性能表现。如果模型的表现不佳,可以根据评估结果进行调整和改进。 6. 模型应用:在实际应用中,可以使用训练好的模型进行鸟类识别任务。将待识别的输入图像输入到训练好的模型中,通过模型的输出得到鸟类的识别结果。可以根据需要对模型进行调整和优化,以提高识别的准确性和鲁棒性。 综上所述,基于GoogLeNet实现鸟类识别任务即是通过准备数据、搭建模型、进行训练和评估等步骤,以实现对鸟类图像的准确分类和识别

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值