前言:
海洋中的鱼类资源不仅有一定的食用价值,而且有很高的药用价值,近年来,世界各国对于海洋鱼类资源的重视程度与日俱增。在鱼类资源的开发利用中,必须对鱼类进行识别,从而了解其分布情况。但是由于鱼的种类繁多,形状大小相似,同时考虑到海底拍摄环境亮度低、场景模糊的实际情况,对鱼类资源的识别较为困难。
针对海洋鱼类识别难的问题,本实践使用卷积神经网络(Convolutional Neural Network,CNN)构建深度学习模型,自动提取高质量的特征,从而解决海洋鱼类识别的问题。接下来,我将分享如何使用百度深度学习框架飞桨来搭建卷积神经网络,实现海洋鱼类资源的识别。
01. 卷积神经网络
卷积神经网络主要由卷积层、池化层和全联接层三种网络层构成,在卷积层与全联接层后通常会接激活函数。
卷积层
卷积层会对输入的特征图(或原始数据)进行卷积操作,输出卷积后产生的特征图。卷积层是卷积神经网络的核心部分。输入到卷积层的特征图是一个三维数据,不仅有宽、高两个维度,还有通道维度上的数据,因此输入特征图和卷积核可用三维特征图表示。如下图所示,对于一个(3,6,6)的输入特征图,卷积核大小为(3,3,3),输出大小为(1,4,4),当卷积核窗口滑过输入时,卷积核与窗口内的输入元素作乘加运算,并将结果保存到输出相应的位置。
上图中卷积操作输出了一张特征图,即通道数为1的特征图,而一张特征图包含的特征数太少,在大多数计算机视觉任务中是不够的,所以需要构造多张特征图,而输入特征图的通道数又与卷积核通道数相等,一个卷积核只能产生一张特征图,因此需要构造多个卷积核。在RGB彩色图像上使用多个卷积核进行多个不同特征的提取,示意图如下:
池化层
池化层的作用是对网络中的特征进行选择,降低特征数量,从而减少参数数量和计算开销。池化层降低了特征维的宽度和高度,也能起到防止过拟合的作用。最常见的池化操作为最大池化或平均池化。如下图所示,采用了最大池化操作,对邻域内特征点取最大值作为最后的特征值。
最常见的池化层使用大小为2×2,步长为2的滑窗操作,有时窗口尺寸为3,更大的窗口尺寸比较罕见,因为过大的滑窗会急剧减少特征的数量,造成过多的信息损失。
批归一化层
批归一化层是由Google的DeepMind团队提出的在深度网络各层之间进行数据批量归一化的算法,以解决深度神经网络内部协方差偏移问题,使用网络训练过程中各层梯度的变化趋于稳定,并使网络在训练时能更快地收敛。
02. 基于飞桨的海洋鱼类识别
飞桨是以百度多年的深度学习技术研究和业务应用为基础,集深度学习核心框架、基础模型库、端到端开发套件、工具组件和服务平台于一体,2016 年正式开源,是全面开源开放、技术领先、功能完备的产业级深度学习平台。
下面我将为大家展示如何用 PaddlePaddle API 编程并搭建一个简单的卷积神经网络,解决海洋鱼类识别问题。主要分为五个步骤,数据准备、模型配置、模型训练、模型评估以及最后使用训练好的模型进行预测。
本实践代码运行的环境配置如下:Python版本3.7,飞桨版本为1.6.2,操作系统为Windows64位操作系统。
步骤1:数据准备
本次实践所使用的是台湾电力公司、台湾海洋研究所和垦丁国家公园在2010年10月1日至2013年9月30日期间,在台湾南湾海峡、兰屿岛和胡比湖的水下观景台收集的鱼类图像数据集。
该数据集包括23类鱼种,共27370张鱼的图像。
本实践选取5种鱼类数据作为数据集进行训练,被划分为两个子集,训练集和测试集比例为9:1
1 #导入必要的包
import zipfile
import os
import random
import paddle
import matplotlib.pyplot as plt
from paddle.fluid.dygraph import Pool2D,Conv2D,BatchNorm
from paddle.fluid.dygraph import Linear
import sys
import numpy as np
from PIL import Image
from PIL import ImageEnhance
import paddle.fluid as fluid
from multiprocessing import cpu_count
import matplotlib.pyplot as plt
import json
#解压原始数据集,将fish_image.zip解压至data目录下
src_path="/home/aistudio/data/data14492/fish_image23.zip"
target_path="/home/aistudio/data/fish_image"
if(not os.path.isdir(target_path)):
z = zipfile.ZipFile(src_path, 'r')
z.extractall(path=target_path)
z.close()
#存放所有类别的信息
class_detail = []
#获取所有类别保存的文件夹名称
class_dirs = os.listdir(target_path+"/fish_image")
data_list_path="/home/aistudio/data/"
TRAIN_LIST_PATH=data_list_path + "train.txt"
EVAL_LIST_PATH=data_list_path + "eval.txt"
#每次执行代码,首先清空train.txt和eval.txt
with open(TRAIN_LIST_PATH, 'w') as f:
pass
with open(EVAL_LIST_PATH, 'w') as f:
pass
首先创建了一个空的class_detail
列表和一个class_dirs
列表&