偏微分方程的有限元解法

本文通过泊松方程为例,详细介绍了偏微分方程的有限元解法,包括方程定义、弱(变分)形式的推导,以及1D和2D数值算例的求解过程。
摘要由CSDN通过智能技术生成

本文我们以求解泊松方程为例,讲述偏微分方程(PDE)的有限元解法,附FEniCS代码

方程定义

首先是泊松方程的表达式
− Δ u = f  in  Ω (1) -\Delta u=f \qquad \text{ in } \Omega \tag{1} Δu=f in Ω(1)
其边界条件
u ∣ Γ D = u 0  on  Γ D ∂ u ∂ n ∣ Γ N = g  on  Γ N = ∂ Ω − Γ D u|_{\Gamma_D}=u_0 \qquad \text{ on } \Gamma_D\\ \left.\frac{\partial u}{\partial n}\right|_{\Gamma_N}=g \qquad \text{ on } \Gamma_N = \partial \Omega - \Gamma_D uΓD=u0 on ΓDnuΓN=g on ΓN=ΩΓD
第一行是第一类边界条件(Dirichlet边界条件),第二行是第二类边界条件(Neumann边界条件)

弱(变分)形式

首先:对式子(1)两边都乘上测试函数 v v v,然后对全域 Ω \Omega Ω积分

这里需要说明一下试探函数(Trail Function)测试函数(Test Function)的概念。
− ∫ Ω Δ u v d x = ∫ Ω f v d x (2) -\int_\Omega \textcolor{red}{\Delta u v} dx=\int_\Omega f v dx \tag{2} ΩΔuvdx=Ωfvdx(2)
测试函数定义为,即在测试函数在第一类边界上为0
V ^ = { v ∈ H 1 ( Ω ) : v = 0  on  Γ D } \hat{V} = \{v\in H^1(\Omega): \textcolor{red}{v=0} \text{ on } \Gamma_D\} V^={ vH1(Ω):v=0 on ΓD}
试探函数定义为
V = { u ∈ H 1 ( Ω ) : u = u 0  on  Γ D } V = \{u\in H^1(\Omega): \textcolor{red}{u=u_0} \text{ on } \Gamma_D\} V=

  • 1
    点赞
  • 41
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值