泛函
设 C C C是一个由函数组成的集合,对于 C C C中的任何一个元素 y ( x ) y (x) y(x),数集 B B B中都有一个元素 F F F与之对应,称 F F F是 y ( x ) y(x) y(x)的泛函(functional),记作 F = F [ y ( x ) ] F = F [ y ( x )] F=F[y(x)]
例如, C = { x , x 2 , x 3 , x 4 , x 5 , … , x n } C=\left\{ x,x^2, x^3,x^4,x^5,\dots,x^n \right\} C={x,x2,x3,x4,x5,…,xn}; F = { R } F=\{R\} F={R}即实数集,则 F F F是 C C C中元素 y ( x ) y(x) y(x)的泛函。
由此可见,泛函是定义域为函数集,而值域为实数或者复数的映射,换句话说,它是从函数组成的一个向量空间到标量域(数域)的映射,它的输入为函数,而输出为标量。
一般情况下,泛函式常用积分形式表示:
J
[
y
(
x
)
]
=
∫
x
0
x
1
F
(
x
,
y
,
y
′
)
d
x
J [ y ( x )] = \int_{x_0}^{x_1} F ( x , y , y')dx
J[y(x)]=∫x0x1F(x,y,y′)dx
式中被积函数
F
(
x
,
y
,
y
′
)
F ( x , y , y')
F(x,y,y′)称为核。
举个很简单的例子,理解泛函:
两点之间的最短路径
如图所示二维平面空间,从坐标原点(0,0)到点(a,b)的连接曲线是 y = y ( x ) y = y(x) y=y(x)。曲线的弧长微元是 d s 2 = d x 2 + d y 2 ds^2 = dx^2 + dy^2 ds2=dx2+dy2或 d s = 1 + ( d y d x ) 2 d x ds = \sqrt {1 + (\frac{dy}{dx})^2} dx ds=1+(dxdy)2dx,则曲线的总弧长是 s = ∫ 0 a ( 1 + y ′ 2 ) 1 / 2 d x s = \int_0^a (1 + y'^2 )^{1/2}dx s=∫0a(1+y′2)1/2dx
其中 s s s是标量,上式右边是 y ′ ( x ) y'(x) y′(x)的广义函数,被称为泛函,可记为 s ( y ′ ) s(y') s(y′)
问题变成了:找出曲线 y ( x ) y(x) y(x),使得泛函 s ( y ′ ) s(y') s(y′)最小。这个问题可以用变分法求解,下一篇博客会介绍变分法。
Reference
[1] 变分法理解1——泛函简介 https://zhuanlan.zhihu.com/p/41573146