要搞工业软件,就一定要弄懂有限元。有限元方法(Finite Element Method, FEM)是一种用于求解偏微分方程(PDEs)和积分方程的数值技术。它通过将复杂的对象或系统分解成许多小的、简单的部分(称为“元素”),再对这些小部分进行数学上的近似,最终通过组合这些近似解来获得整个对象或系统的近似解。大致步骤如下:
1. 数学模型和求解区域的确定
首先,需要根据物理问题建立相应的数学模型,这通常涉及到偏微分方程(PDEs),以及相应的初值条件和边界条件。这一步是将物理问题转化为数学问题的过程。
2. 构造控制方程的弱形式
利用虚功原理或加权残差法,将原始的偏微分方程转化为其弱形式。这一步的目的是为了简化问题的求解,因为弱形式的方程更容易进行数值求解。弱形式通常涉及到积分形式的方程,这使得方程对解的光滑性要求降低。
3. 方程离散与求解域离散
这一步将连续的求解域划分为有限数量的小区域或元素(如三角形、四边形等),这个过程称为网格划分。同时,将弱形式方程中的未知函数用一组基函数来近似表示,从而将原始的连续问题转化为离散问题。
4. 单元分析与单元刚度矩阵的形成
对每个元素,根据其物理特性和几何形状,计算其局部刚度矩阵和负荷向量。单元刚度矩阵表示了单个元素内部节点之间的力学关系。
5. 合成整体刚度矩阵
将所有单元的刚度矩阵按照其在整个求解域中的位置和连接方式组合起来,形成整体刚度矩阵。这一步是将局部的单元信息整合到全局层面。
6. 处理边界条件
在整体刚度矩阵中加入边界条件。这可能涉及到修改刚度矩阵和负荷向量的某些项,以确保边界条件得到满足。边界条件的处理对于保证求解的准确性至关重要。
7. 大型线性方程组求解
最后,通过数值方法(如高斯消元法、共轭梯度法等)求解得到的大型线性方程组,从而得到整个求解域内的近似解。这一步是实际计算过程中最为关键的一步,它直接决定了求解的效率和准确性。
有限元方法的这一系列步骤构成了从物理问题到数学建模,再到数值求解的完整过程。通过这种方法,可以有效地处理各种复杂的工程和物理问题。
有限元计算的效率和准确性是两个非常重要的方面,特别是在处理复杂介质和大规模问题时。
1. 刚度矩阵和质量矩阵的大小
刚度矩阵和质量矩阵是有限元分析中的关键组成部分,它们的大小直接决定了计算的复杂度。在有限元分析中,节点数是刚度矩阵和质量矩阵大小的决定因素,而与单元数无直接关联。若节点数为(n),则刚度矩阵和质量矩阵都是(n \times n)的矩阵。这意味着随着模型的细化,即节点数的增加,矩阵的大小也会相应增加,从而增加求解的复杂度。
2. 计算速度
有限元方法在处理复杂介质和边界条件方面具有明显的优势,但是它的计算速度相对较慢。特别是当节点数目达到10000时,其计算速度可能比有限差分法慢约1000倍。这是因为在有限元计算中,大型矩阵的操作(如矩阵乘法和矩阵求逆)占据了绝大部分的计算时间,而且这种计算的复杂度随着节点数的增加而加大。
3. 质量矩阵求逆的耗时
质量矩阵求逆是有限元计算中非常耗时的一个步骤。在某些求解过程中,需要对质量矩阵进行求逆运算,尤其是在隐式时间积分算法中。当节点数目达到10000时,求逆操作能占到总计算耗时的约80%。这对计算效率构成了很大的挑战。
4. 计算的准确度
有限元计算的准确度不仅与网格的间距有关,也与单元的质量相关。理想情况下,单元应该尽可能规则,这样可以保证更高的计算精度。单元的不规则性会导致数值积分误差的增加,从而影响整体的计算结果。
5. 谱元法的应用
谱元法是一种高阶的有限元方法,它通过在元素内部巧妙地设置节点位置,使得质量矩阵成为对角矩阵。这样,质量矩阵的求逆就变得非常简单和快速,极大地提高了计算效率。谱元法结合了高阶多项式近似的精确性和有限元方法的灵活性,特别适用于需要高精度解的问题。
总的来说,尽管有限元方法在处理大规模和复杂问题时存在计算速度慢和求逆耗时等问题,通过优化计算方法,如采用谱元法等,可以在一定程度上提高其计算效率和准确性。
参考文章