[BZOJ1004]HNOI2008 Cards |polya|置换群|DP|乘法逆元

数学题真是太难了。。。我是看论文看懂的,polya原理和Burnside引理,不过论文里也没有具体证明,,就是照搬着用了。。还要求一次乘法逆元,上扩欧就是了。还有一个就是加上颜色数量限制的带权染色方案数,用一个背包dp,f[i][sa][sb][sc]表示用三种颜色数各为sa,sb,sc染完前i带权点的方案数,然后转移就是分别用a,b,c去染新的节点,i这一维可以用背包的优化方法优化掉。。

#include<iostream>
#include<cstdio>
#include<memory.h>
using namespace std;
int i,j,k,m,n,sa,sb,sc,p,ans,x,y,zh[70][70],f[70][70][70],size[70],u[70];
int dp(int x)
{
	int cnt=0,i,j,k,l,t;
	memset(u,0,sizeof(u));
	for (i=1;i<=n;i++)
		if (!u[i])
		{
			j=i;t=0;
			while (!u[j]) u[j]=1,j=zh[x][j],t++;
			size[++cnt]=t;
		}
	memset(f,0,sizeof(f));
	f[0][0][0]=1;
	for (l=1;l<=cnt;l++)
		for (i=sa;i>=0;i--)
			for (j=sb;j>=0;j--)
				for (k=sc;k>=0;k--)
				{
					if (i>=size[l]) f[i][j][k]=(f[i][j][k]+f[i-size[l]][j][k])%p;
					if (j>=size[l]) f[i][j][k]=(f[i][j][k]+f[i][j-size[l]][k])%p;
					if (k>=size[l]) f[i][j][k]=(f[i][j][k]+f[i][j][k-size[l]])%p;
				}
	return f[sa][sb][sc];
}
int exgcd(int a,int b,int &x,int &y)
{
	if (!b) {x=1,y=0;return a;}
	int x1,y1,d;
	d=exgcd(b,a%b,x1,y1);
	x=y1;y=x1-a/b*y1;
	return d;
}
int main()
{
	scanf("%d%d%d%d%d",&sa,&sb,&sc,&m,&p);
	n=sa+sb+sc;ans=0;
	for (i=1;i<=m;i++)
		for (j=1;j<=n;j++)
			scanf("%d",&zh[i][j]);
	m++;
	for (i=1;i<=n;i++) zh[m][i]=i;
	for (i=1;i<=m;i++)
		ans=(ans+dp(i))%p;
	exgcd(m,p,x,y);
	if (x<0) x+=(-x/p+1)*p;
	ans=(ans*x)%p;
	cout<<ans;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的个儿子,如果它的个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值