机器学习中的模型评估指标

机器学习中的模型评估指标

一、分类问题

1.1 混淆矩阵

先明确几个概念,真/假阳性,真/假阴性。
在这里插入图片描述
对于这样的一个混淆矩阵,我们希望模型能够做到,TP和TN尽可能地高,而FP和FN尽可能地低。但是对于一个定量的评估来说,这样只凭借混淆矩阵看一眼来比较是不够科学客观的,因此后面也在真/假阳性,真/假阴性定义的基础上,题出了更多的标准。

1.2 准确率 Accuracy

A c c u r a c y = T P + T N T P + F P + T N + F N = 正 确 分 类 样 本 个 数 样 本 总 个 数 Accuracy=\frac{TP+TN}{TP+FP+TN+FN}=\frac{正确分类样本个数}{样本总个数} Accuracy=TP+FP+TN+FNTP+TN=
通过准确率来进行模型评估是最简单直观的办法,但是也有一个很重要的缺陷,当分类的样本不均衡时,准确率并不够客观。

假如在所有的样本中,99%的样本都是负样本,那么模型直接无脑全部判别为负样本,依然会有99%的准确率,这显然是我们不希望的。

1.2 精确率 (Precision) 、召回率(Recall) 、P-R曲线

精确率是指分类正确的正样本的个数,与分类为正样本的个数之比。
P r e c i s i o n = T P T P + F P Precision=\frac{TP}{TP+FP} Precision=TP+FPTP
召回率是指分类正确的正样本的个数,与实际为正样本的个数之比。
R e c a l l = T P T P + F N Recall=\frac{TP}{TP+FN} Recall=TP+FNTP
可以看出,Precision和Recall是两个既矛盾又统一的两个指标,为了提高Precision,模型会“小心翼翼”的把最可能是正样本的例子分类为正,而这又会漏掉部分正样本,导致了Recall的降低。

因此,可以知道,一个好的模型具备这种特征:Precision和Recall都尽可能地高。自然的,就有了P-R曲线:横轴为Recall,纵轴为Precision。其缺点是,当正负样本的比率变化时,P-R曲线也会发生较大的变换,因此这个评价方法也不够客观,这也引出了接下来的ROC曲线。

1.3 真阳性率(TPR) 、假阳性率(FPR) 、ROC曲线

对于真阳性率(True Positive Rate):
T P R = T P T P + F N TPR=\frac{TP}{TP+FN} TPR=TP+FNTP
发现他的公式与Recall是同样的。同时TPR又叫做灵敏度 Sensitivity.
对于假阳性率(False Positive Rate):
F P R = F P T N + F P FPR=\frac{FP}{TN+FP} FPR=TN+FPFP
ROC曲线:Reciever Operating Characteristic。以假阳性率为横轴,真阳性率为纵轴进行绘制。
同时也有一个AUC的定义:Area Uncer Curve。即ROC曲线下的面积,当AUC越接近1时,说明模型越好,一般来说,AUC的取值范围是 ( 0.5 , 1 ) (0.5,1) (0.5,1),如果当 A U C < 0.5 AUC<0.5 AUC<0.5时,可以考虑将分类的结果进行反转,即 P r e d c t i o n = 1 − P r e d i c t i o n Predction = 1-Prediction Predction=1Prediction,可以得到更好的效果。若 A U C = 0.5 AUC=0.5 AUC=0.5,说明模型什么也没学习到,只是在进行一个随机的分类。

二、回归问题

回归问题的评估量化思想主要有两个,即L1与L2范数的思想。

2.1 平方根误差

最常见的是平方根误差:
R M S E = ∑ i = 1 n ( y i − y i ^ ) 2 n RMSE=\sqrt{\frac{\sum_{i=1}^{n}(y_i-\hat{y_i})^2}{n}} RMSE=ni=1n(yiyi^)2
其思想来自L2正则化,衡量的是两个向量之间的欧式距离,即他们的长度方面的误差。RMSE能很好的反应预测值与真实值之间的偏离程度,但它的缺点是对个别的偏离较大的异常点比较敏感。

2.2 平均绝对百分比误差

平均绝对百分比误差:Mean Absolute Percent Error
M A P E = ∑ i = 1 n ∣ y i − y i ^ y i ∣ × 100 n MAPE=\sum_{i=1}^{n}\left| \frac{y_i-\hat{y_i}}{y_i} \right|\times\frac{100}{n} MAPE=i=1nyiyiyi^×n100
相对于RMSE,MAPE对每个点的误差进行了归一化,降低了离群点带来的误差影响。他的鲁棒性比RMSE更好。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值