【DeepSeek本地部署详细指南】:从模型选择到数据投喂,再到本地API调用,打造专属AI知识库!

本文在个人博客中同步更新:DeepSeek本地部署指南:从模型选择到数据投喂,打造专属AI知识库 | Gavana

        关注AI开发工程师Gavana,带你了解更多实用有趣的AI宝藏✨

        个人博客:Gavana - 爱你一万年💞


目录

一、选择合适的DeepSeek版本

二、DeepSeek本地部署

1、安装Ollama

2、部署 DeepSeek R1 模型

3、通过ollama端口 API 访问原始模型

三、WebUI可视化

四、数据投喂训练AI

1、自定义AI知识库

2、通过AnythingLLM端口 API 访问经训练的AI


一、选择合适的DeepSeek版本

模型版本基础配置(CPU推理)加速配置(GPU推理)存储需求内存要求适用场景
1.5B至少4核x86/ARMv9(非必需)NVIDIA RTX 3050 6GB3.2GB8GB+智能家电控制/工业传感器文本预处理
7B-8B8核Zen4/13代酷睿至少RTX 3060 12GB
推荐:RTX 4070 Ti Super 16GB
8-10GB16GB+本地知识库问答/代码补全
14B-32B16核至强W7-2495X推荐:RTX 4090 24GB15-35GB48GB+企业级文档分析/多轮对话系统
70B32核EPYC 96542x RTX 5090 32GB(NVLink互联)70GB+128GB+科研计算/金融建模
671B64核EPYC 9684X集群8x H100 80GB(InfiniBand互联)300GB+512GB+国家级AI研究/通用人工智能探索

根据电脑配置,选择合适的DeepSeek版本,这里我选择的是32B版本,这里我的电脑配置:

二、DeepSeek本地部署

1、安装Ollama

Ollama是一款功能强大的本地化大模型管理工具,能够帮助用户轻松部署和运行DeepSeek模型。

首先我们需要安装Ollama,它可以在本地运行和管理大模型。到Ollama官网 https://ollama.com,点击下载,然后选择适合自己系统的版本,这里选择Windows:

安装完成后,打开命令行界面并输入

ollama

如果屏幕上出现以下提示信息,那么恭喜你,Ollama 已经成功安装。

2、部署 DeepSeek R1 模型

首先,访问 Ollama 官网并点击页面顶部的「模型」(Models)选项,接着在列表中找到并点击「DeepSeek R1」

在模型详情页面,根据我们计算机的显存容量选择合适的模型版本(详情参考第一章):

例如,电脑运行的是 Windows系统,拥有 4GB 的显存,因此我选择了1.5b 版本的模型。点击 1.5b 版本,页面右侧将显示下载指令:

将此下载命令复制并粘贴到命令行中执行开始下载:

待命令执行完毕,就可以通过命令行与DeepSeek大模型进行交互了:

但是在命令行窗口下对话,还是太抽象,我们需要一个美观的图文交互界面。

3、通过ollama端口 API 访问原始模型

  • 请求url:http://localhost:11434/api/chat

{
	"model": "deepseek-r1:1.5b",
    "messages": [
        {
            "role": "system",
            "content": "你是一个能够理解中文指令并帮助完成任务的智能助手。你的任务是根据用户的需求生成合适的分类任务或生成任务,并准确判断这些任务的类型。请确保你的回答简洁、准确且符合中英文语境。"
        },
        {
            "role": "user",
            "content": "写一个简单的 Python 函数,用于计算两个数的和"
        }
    ],
    "stream": false
}

三、WebUI可视化

WebUI可视化选择直接在浏览器安装Page Assist插件的方式来实现。

Page Assist是本地 AI 模型的 Web UI,可以使用本地运行的 AI 模型来辅助进行网络浏览,利用本地运行的AI模型,在浏览网页时进行交互,或者作为本地AI模型提供者(如Ollama、Chrome AI等)的网页界面。

仓库地址:https://github.com/n4ze3m/page-assist

当前功能:

  • 各类任务的侧边栏

  • 支持视觉模型

  • 本地AI模型的简约网页界面

  • 网络搜索功能

  • 在侧边栏与PDF进行对话

  • 与文档对话(支持pdf、csv、txt、md、docx格式)

要把DeepSeek可视化,首先在扩展中的管理扩展页面,搜索找到Page Assist

然后点击获取Page Assist

获取完成后,就可以在扩展中看到PageAssist插件,点击对应的插件就可以直接使用。

进入插件后,选择我们上面下载好的deepseek模型,然后就可以跟DeepSeek进行可视化对话了,如果需要获取最新的数据,需要打开下方的联网开关。

到这里,DeepSeek的WebUI可视化就完成了。

四、数据投喂训练AI

1、自定义AI知识库

nomic-embed-text是一款高效的嵌入式模型,专为数据投喂任务设计

实现数据投喂训练AI,需要下载nomic-embed-text和安装AnythingLLM。

下载nomic-embed-text:

在终端输入 ollama pull nomic-embed-text 回车下载nomic-embed-text嵌入式模型(后面做数据投喂会用到)。

安装AnythingLLM:

进入官网 AnythingLLM | The all-in-one AI application for everyone,选择对应系统版本的安装包进行下载

选择【所有用户】点击下一步。

修改路径地址中的首字符C可更改安装位置,本例安装到F盘,点击下一步。

点击完成。

软件打开后,点击【Get started】。

点击箭头,进行下一步。

输入工作区名称,点击下一步箭头。

点击【设置】,里面可以设置模型、界面显示语言等。

若软件显示英文,可在Customization外观定制里面选择Chinese即可。

AnythingLLM设置

在软件设置里面,LLM首选项界面,提供商选择Ollama,Ollama Model选择你前面下载的DeepSeek-R1系列模型1.5b~671b,然后点击Save changes。

在Embedder首选项界面,嵌入引擎提供商选择Ollama,Ollama Embedding Mode选择【nomic-embed-text】,然后点击保存更改。

①点击【工作区设置】,②点击聊天设置,③工作区LLM提供者选择【Ollama】,④工作区聊天模型选择【deepseek-r1】模型,⑤然后点击【Update workspace agent】。

代理配置界面,工作区代理LLM提供商选择【Ollama】,工作区代理模型选择【deepseek-r1】,然后点击【Update workspace agent】。

最后就是数据投喂训练AI:

在工作区界面,点击【上传】。

❶点击upload选择需要上传的文件(支持PDF、Txt、Word、Excel、PPT等常见文档格式)。❷勾选上传的文件,❸点击【Move to Workspace】。

点击【Save and Embed】。

没有投喂数据之前,输入正点原子公司名称是什么?AI是回答不了的,投喂后能够准确回答出来。

到这里数据投喂训练AI就完成啦,有需求的完全可以自己搭建一个智能知识库出来。

2、通过AnythingLLM端口 API 访问经训练的AI

注意:默认访问端口是关闭的,需要手动打开

  • 请求url:http://localhost:3001/api/v1/workspace/test/chat

这里的 test 就是我们之前创建的工作区,不同工作区投喂的数据互不影响。意思就是,你新建一个工作区,将无法回答test工作区中已经投喂的相关数据的内容。

{
  "message": "高垚淼是谁",
  "mode": "chat",
  "sessionId": "identifier-to-partition-chats-by-external-id",
  "attachments": [
    {
      "name": "image.png",
      "mime": "image/png",
      "contentString": "..."
    }
  ]
}

额外的这里还需要在AnythingLLM上创建api key,在请求头上填写

请求,我们将看到如下返回:

其中各参数含义如下:

参数类型必填描述
messagestring用户发送的消息内容,即需要模型处理的任务或问题。
modestring定义对话模式,可选值为 querychat
- query:仅从向量数据库中检索相关信息,不依赖 LLM 的通用知识。
- chat:结合 LLM 的通用知识和向量数据库中的信息生成回答。
sessionIdstring用于分区聊天会话的唯一标识符,便于跟踪和管理特定用户的对话历史。
attachmentsarray附件列表,支持上传文件或图片作为上下文信息。

同时,点击这里能看到其他所有的API请求接口,可以进一步了解:

最后这里再补充一下,细心的小伙伴可能发现了,现在如果再通过ollama的接口去调用模型,还是无法回答知识库中的内容。我们这里的知识库搭建,只是利用了工具 nomic-embed-text嵌入式模型,让模型能够有东西去进行检索,并没有让原deepseek模型得到训练哈,那样只有微调才能办到~ 

### 向本地部署DeepSeek 和 Chatbox 系统数据 为了使本地部署DeepSeek 和 Chatbox 能够理解和利用外部输入的知识,需先准备并处理好要加入系统的资料。这涉及几个关键步骤: #### 数据预处理 在将任何类型的文档或信息源引入之前,必须对其进行适当格式化和转换,以便机器学习模型能够解析和理解这些材料的内容[^3]。 #### 使用 `nomic-embed-text` 工具嵌入文本 通过执行特定命令来调用名为 nomic-embed-text 的工具,该工具负责接收文件作为输入参数,并将其转化为适合 AI 处理的形式。此过程通常会创建一个包含结构化表示的新数据库条目,使得后续查询更加高效准确。 ```bash pip install nomic-embed-text nomic-embed-text --input_path=/path/to/your/data --output_db=deepseek_knowledge_base.db ``` 上述脚本展示了如何安装 Python 库以及运行 CLI 命令以加载自定义资源到指定的目标位置(这里是假设性的 SQLite 文件)。实际路径应替换为具体环境中对应的绝对地址。 #### 集成至 DeepSeek 流程 一旦完成了前期准备工作之后,就可以继续配置 DeepSeek 来访问新建立起来的信息存储区了。这意味着更新应用程序设置中的相应部分,指向刚才生成的数据集所在之处;同时确保所有必要的依赖项都已妥善安置到位,从而保障整个架构稳定运作[^1]。 #### 更新 Chatbox 对话逻辑 为了让聊天机器人具备基于新增加的知识作出回应的能力,在完成以上操作后还需要调整其内部工作流程—特别是那些涉及到检索与推理机制的部分。可能需要重新训练某些组件或是微调现有算法,最终目的是让系统能够在对话过程中有效地运用最新注入的情报素材[^2]。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Gavana.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值