Taobao电商用户行为分析

通过对2017年11月25日至12月3日的阿里云天池用户行为数据进行分析,发现整体转化率为2.3%,AIPL漏斗模型显示浏览到收藏加购转化率为9.13%,收藏加购到下单转化率为25.65%。RFM模型中,重要价值客户占比1.79%,重要发展客户占比77%。转化率高的商品品类和商品被识别出来。建议改进产品推送,关注高价值客户并针对高转化率商品进行营销策略调整。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       通过阿里天池提供的2017年11月25日-2017年12月3日的用户行为数据,尝试分析得出对业务有用的优化建议。

一、数据来源

1、 数据集-阿里云天池 (aliyun.com)

2、网上搜集得来的数据SQL文件

二、理解数据

三、提出问题

1、各环节转化率如何?转化率低的原因?

2、用户访问峰值时段?

3、用户RFM分级?

4、转化率top10的商品品类、商品?

四、分析思路

五、数据预处理

1、数据整体认知

select count(distinct user_id) as 用户数,
count(distinct item_id) as 商品数,
count(distinct category_id) as 品类数 
from userbehavior;

+--------+--------+--------+
| 用户数 | 商品数 | 品类数 |
+--------+--------+--------+
|    983 |  64467 |   3128 |
+--------+--------+--------+
1 row in set (3.49 sec)

共统计983名用户,64467个商品,3128个品类。

2、重复值查询处理

select * from userbehavior
group by item_id,user_id,timestamp
having count(*)>1;

Empty set (0.00 sec)

无重复值

3、缺失值查询处理

select * from userbehavior
where user_id is null
or item_id is null
or category_id is null
or behavior_type is null
or timestamp is null;

Empty set (0.00 sec)

无缺失值

4、时间戳处理

alter table userbehavior add dates date;//添加一个date格式的dates(日)字段
update userbehavior set dates =from_unixtime(timestamp);//使用from_unixtime函数转换时间戳

alter table userbehavior add t
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值