一、安装环境
去yolov5官方github下载源码和pt权重文件
点开requirement.txt查看所需安装环境
在cmd中运行图中圈出的代码一键安装
二、准备数据集
推荐一个网站,非常好用Sign in to Roboflow
标注数据集很快,还可以自动化分数据集,进行数据增强等
具体操作可以看视频
使用Roboflow网站标注数据集
三、开始训练
一般将数据集放在data目录下 这里我对CF穿越火线的图像进行了标注
修改yaml文件的路径如图
打开train文件 修改如图所示路径代码
其中weight指向预训练模型权重 可以到yolov5的github页面下载,选择合适的权重,然后放在新建weight文件夹
cfg导入你选择的预训练模型yaml文件路径
data指向你自己的数据集的数据配置文件
epchos调整你的训练轮次
batch-size调整训练批量,依据配置自行选择,我是3050Ti,批量4刚刚合适
下面device选择训练的GPU
接下来直接运行,如果报错出现包的问题直接安装就行,如果直接装不了打开anaconda里面安装软件包也可,网络问题的话还是建议挂个梯子再安装。
四、结果
会保存在run目录下
包括一些线图和结果对比图等,还有保存下来的模型权重
五、验证
打开detect文件
将weights指向刚才训练出来的最好权重文件bestweight
source指向自己想要验证测试的文件夹,可以有图片或视频都可以
data还是指向刚才的数据配置文件
具体验证结果可以看视频
cf目标检测验证
至此,你完成了一次目标检测的任务。