Pytorch-Yolov5训练自己的数据集(快速上手使用) 教程

本文详细介绍了如何在Yolov5框架下进行目标检测,包括安装环境设置、使用Roboflow准备和标注数据、配置参数进行训练,以及验证过程。通过一步步的指导,帮助读者完成一次目标检测任务。
摘要由CSDN通过智能技术生成

一、安装环境

去yolov5官方github下载源码和pt权重文件

点开requirement.txt查看所需安装环境

在cmd中运行图中圈出的代码一键安装

二、准备数据集

推荐一个网站,非常好用Sign in to Roboflow

标注数据集很快,还可以自动化分数据集,进行数据增强等
具体操作可以看视频

使用Roboflow网站标注数据集

三、开始训练

一般将数据集放在data目录下 这里我对CF穿越火线的图像进行了标注

修改yaml文件的路径如图

打开train文件 修改如图所示路径代码

其中weight指向预训练模型权重 可以到yolov5的github页面下载,选择合适的权重,然后放在新建weight文件夹

cfg导入你选择的预训练模型yaml文件路径

data指向你自己的数据集的数据配置文件

epchos调整你的训练轮次

batch-size调整训练批量,依据配置自行选择,我是3050Ti,批量4刚刚合适

下面device选择训练的GPU 

接下来直接运行,如果报错出现包的问题直接安装就行,如果直接装不了打开anaconda里面安装软件包也可,网络问题的话还是建议挂个梯子再安装。

四、结果

会保存在run目录下

包括一些线图和结果对比图等,还有保存下来的模型权重

五、验证

打开detect文件

将weights指向刚才训练出来的最好权重文件bestweight

source指向自己想要验证测试的文件夹,可以有图片或视频都可以

data还是指向刚才的数据配置文件

具体验证结果可以看视频

cf目标检测验证

至此,你完成了一次目标检测的任务。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值