一、卷积神经网络与传统神经网络的学习原理对比
传统神经网络:有监督的机器学习,输入为特征。其训练过程为:
输入(原始图像)→人工进行特征提取→神经网络进行分类→输出
卷积神经网络:无监督特征学习,输入为最原始的图像。其训练过程为:
输入(原始图像)→特征提取和分类都由神经网络进行→输出
传统神经网络依靠人工设计特征,局限于研究人员的经验和特征表达能力,无法应对各种不变性。传统神经网路与SVM类似,角色只是一个分类器。
二、卷积神经网络的基本概念
1.多通道卷积:输出特征图的每一个通道,由输入图的所有通道和相同数量的卷积核对应卷积计算并求和。
输入特征图:通道数x高度x宽度→;输出特征图:
卷积核数量: