一、卷积神经网络与传统神经网络的学习原理对比
传统神经网络:有监督的机器学习,输入为特征。其训练过程为:
输入(原始图像)→人工进行特征提取→神经网络进行分类→输出
卷积神经网络:无监督特征学习,输入为最原始的图像。其训练过程为:
输入(原始图像)→特征提取和分类都由神经网络进行→输出
传统神经网络依靠人工设计特征,局限于研究人员的经验和特征表达能力,无法应对各种不变性。传统神经网路与SVM类似,角色只是一个分类器。
二、卷积神经网络的基本概念
1.多通道卷积:输出特征图的每一个通道,由输入图的所有通道和相同数量的卷积核对应卷积计算并求和。
输入特征图:通道数x高度x宽度→;输出特征图:

卷积核数量:
2.填充:给卷积前的图像边界添加额外的行/列
作用:①控制卷积后图像分辨率,方便计算特征图尺寸的变化;

本文对比了卷积神经网络(CNN)与传统神经网络的学习原理,传统网络依赖人工特征提取,而CNN则能自动学习。介绍了CNN的基本概念,如多通道卷积、填充、步长、池化和感受野,并阐述了局部连接的重要性,以降低参数数量和提高计算效率。此外,还讨论了CNN如何利用图像结构信息和自相似性来识别特征。
最低0.47元/天 解锁文章
14万+

被折叠的 条评论
为什么被折叠?



