卷积神经网络的基本概念和重要思想

本文对比了卷积神经网络(CNN)与传统神经网络的学习原理,传统网络依赖人工特征提取,而CNN则能自动学习。介绍了CNN的基本概念,如多通道卷积、填充、步长、池化和感受野,并阐述了局部连接的重要性,以降低参数数量和提高计算效率。此外,还讨论了CNN如何利用图像结构信息和自相似性来识别特征。
摘要由CSDN通过智能技术生成

一、卷积神经网络与传统神经网络的学习原理对比

传统神经网络:有监督的机器学习,输入为特征。其训练过程为:

输入(原始图像)→人工进行特征提取→神经网络进行分类→输出

卷积神经网络:无监督特征学习,输入为最原始的图像。其训练过程为:

输入(原始图像)→特征提取和分类都由神经网络进行→输出

传统神经网络依靠人工设计特征,局限于研究人员的经验和特征表达能力,无法应对各种不变性。传统神经网路与SVM类似,角色只是一个分类器。

二、卷积神经网络的基本概念

1.多通道卷积:输出特征图的每一个通道,由输入图的所有通道和相同数量的卷积核对应卷积计算并求和。

输入特征图:通道数x高度x宽度→C_{i}\times H_{i}\times W_{i};输出特征图:C_{o}\times H_{o}\times W_{o}

 卷积核数量:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值