如何开始AI视觉应用研发?

本文介绍了如何开始AI视觉应用的研发,包括使用Yolo模型进行物体识别,涉及ONNX Runtime、数据标注、训练、评估指标以及C#和C++环境的准备。文章还提及了高速截图技术和DirectML的运用,以及识别结果的处理。注意,为防止非法使用,部分细节未详述。
摘要由CSDN通过智能技术生成

该文章属于AI视觉应用研发初级内容,后续我会逐步更新详细的高级教程和文章。

AI视觉识别的应用场景还是很多的,比如:道路交通、智能家居、智慧厨房、游戏服务、智慧医疗等

举个简单例子:上传体检报告后根据报告推荐饮食搭配和运动建议,按次收费或带货盈利

我是如何做计算机视觉研发的呢?

其实,通过Yolo模型可以快速的实现业务需求,目前最新版本v8,v8的地址:Ultralytics YOLOv8 Docs

先说结果:
家用电脑配置:I7-7700k, 48g内存, 1060-6g显卡, Windows-11

语言 识别效率 FPS 显卡
C# 12ms ≈60~80 1060
C++ 9ms ≈70~85 1060
C# 3ms ≈105~120 4090
C++ 1~2ms ≈130~140 4090

··识别效率=图像获取+自训练物体识别+识别结果反馈


实现前要学习几个基础知识和环境准备:

  1. ONNX Runtime: 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值