朴素页贝斯

基于贝叶斯决策理论的分类方法

优点:在数据较少的情况下仍然有效,可以处理多类别问题。
缺点:对于输入数据的准备方式较为敏感。
适用数据类型:标称型数据
在这里插入图片描述
用p1(x,y)表示数据点(x,y)属于类别1(图中用圆点表示的类别)的概率,用p2(x,y)表示数据点(x,y)属于类别2(图中用三角形表示的类别)的概率, 那么对于一个新数据点(x,y),可以用下面的规则来判断它的类别:

  • 如果 p1(x,y) > p2(x,y),那么类别为1。
  • 如果 p2(x,y) > p1(x,y),那么类别为2。
    也就是说,我们会选择高概率对应的类别。这就是贝叶斯决策理论的核心思想,即选择具有高概率的决策。

条件概率

一种有效计算条件概率的方法称为贝叶斯准则。贝叶斯准则告诉我们如何交换条件概率中 的条件与结果,即如果已知P(x|c),要求P(c|x),那么可以使用下面的计算方法:
在这里插入图片描述
使用条件概率来分类
在这里插入图片描述
使用这些定义,可以定义贝叶斯分类准则为:  如果P(c1|x, y) > P(c2|x, y),那么属于类别c1。  如果P(c1|x, y) < P(c2|x, y),那么属于类别c2。 使用贝叶斯准则,可以通过已知的三个概率值来计算未知的概率值。

使用朴素贝叶斯进行文档分类

朴素贝叶斯的一般过程
(1) 收集数据:可以使用任何方法。
(2) 准备数据:需要数值型或者布尔型数据。
(3) 分析数据:有大量特征时,绘制特征作用不大,此时使用直方图效果更好。
(4) 训练算法:计算不同的独立特征的条件概率。
(5) 测试算法:计算错误率。
(6) 使用算法:一个常见的朴素贝叶斯应用是文档分类。可以在任意的分类场景中使用朴 素贝叶斯分类器,不一定非要是文本。

使用Python进行文本分类

以在线社区的留言板为例
为了不影响社区的发展,我们要屏蔽侮辱性的言论,所以要构建一 个快速过滤器,如果某条留言使用了负面或者侮辱性的语言,那么就将该留言标识为内容不当。过 滤这类内容是一个很常见的需求。对此问题建立两个类别:侮辱类和非侮辱类,使用1和0分别表示。
接下来首先给出将文本转换为数字向量的过程,然后介绍如何基于这些向量来计算条件概率, 并在此基础上构建分类器,后还要介绍一些利用Python实现朴素贝叶斯过程中需要考虑的问题。
准备数据:从文本中构建词向量

def loadDataSet():
postingList = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
                   ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                   ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                   ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                   ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                   ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    classVec = [0, 1, 0, 1, 0, 1]
    return postingList, classVec
def createVocabList(dataSet):
       vocabSet = set([])  
    for document in dataSet:
        vocabSet = vocabSet | set(document) 
    return list(vocabSet)
def setOfWords2Vec(vocabList, inputSet):
      returnVec = [0] * len(vocabList)
	for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)] = 1
        else:
            print("the word: %s is not in my Vocabulary!" % word)
    return returnVec
    import bayes
 listOPosts, listClasses = bayes.loadDataSet()
 myVocalList = bayes.createVocabList(listOPosts)
 myVocalList
 ['cute', 'love', 'help', 'garbage', 'quit', 'I', 'problems', 'is', 'park', 'stop', 'cute', 'flea', 'dalmation', 'licks', 'food', 'not', 'him', 'buying', 'posting', 'has', 'worthless', 'ate', 'to', 'maybe', 'please', 'dog', 'how', 'stupid', 'so', 'take', 'mr', 'steak','my']
 bayes.setOfWords2Vec(myVocalList, listOPosts[0])
[0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
>>> bayes.setOfWords2Vec(myVocalList, listOPosts[3])
[0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]

训练算法:从词向量计算概率

如果将w展开为一个个独立特征,那么就可 以将上述概率写作p(w0,w1,w2…wN|ci)。这里假设所有词都互相独立,该假设也称作条件独立性 假设,它意味着可以使用p(w0|ci)p(w1|ci)p(w2|ci)…p(wN|ci)来计算上述概率,这就极大地 简化了计算的过程。
该函数的伪代码如下

计算每个类别中的文档数目
对每篇训练文档:
	对每个类别:
		如果词条出现在文档中→ 增加该词条的计数值
		增加所有词条的计数值 
	对每个类别:
		对每个词条:
			将该词条的数目除以总词条数目得到条件概率  
	返回每个类别的条件概率

我们利用下面的代码来实现上述伪码

def trainNB0(trainMatrix,trainCategory):
    numTrainDocs = len(trainMatrix)  
    numWords = len(trainMatrix[0])   
    pAbusive = sum(trainCategory)/float(numTrainDocs) 
    p0Num = ones(numWords); p1Num = ones(numWords)      
    p0Denom = 2.0; p1Denom = 2.0 
	for i in range(numTrainDocs): 
        	if trainCategory[i] == 1:
            	p1Num += trainMatrix[i]
            	p1Denom += sum(trainMatrix[i])
        	else:
            	p0Num += trainMatrix[i]
            	p0Denom += sum(trainMatrix[i])
   	 p1Vect = log(p1Num/p1Denom)     
   	 p0Vect = log(p0Num/p0Denom)       
   	 return p0Vect,p1Vect,pAbusive
from numpy import *
import importlib
reload(bayes)
<module 'bayes' from 'F:\\Python\\机器学习\\bayes.py'>
 listOPosts, listClasses = bayes.loadDataSet()
 myVocalList = bayes.createVocabList(listOPosts)
 trainMat = []
 for postinDoc in listOPosts:
 trainMat.append(bayes.setOfWords2Vec(myVocalList, postinDoc)
  pOV, plV, pAb = bayes.trainNB0(trainMat, listClasses)
pAb
0.5
pOV
array([0.04166667 , 0.04166667, 0.        , 0.        ,           ,
       0.04166667, 0.        , 0.04166667,  
       0.        , 0.04166667,  0.04166667, 0.        ,
       1.        , 0.125      ])
plV
array([0.        , 0.        , 0.        , 0.5263158, 0.5263158        ,
       0.        ,  0.15789474,  0.        , 0.        , 0.05263158, .05263158, 0.        , 0.05263158,
       0.05263158, 0.        ])

小结

  • 对于分类而言,使用概率有时要比使用硬规则更为有效。贝叶斯概率及贝叶斯准则提供了一 种利用已知值来估计未知概率的有效方法。

  • 利用现代编程语言来实现朴素贝叶斯时需要考虑很多实际因素。下溢出就是其中一个问题,
    它可以通过对概率取对数来解决。词袋模型在解决文档分类问题上比词集模型有所提高。还有其
    他一些方面的改进,比如说移除停用词,当然也可以花大量时间对切分器进行优化。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值