小明系列故事——未知剩余系
Time Limit: 500/200 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 1190 Accepted Submission(s): 292
Problem Description
“今有物不知其数,三三数之有二,五五数之有三,七七数之有二,问物几何?”
这个简单的谜题就是中国剩余定理的来历。
在艰难地弄懂了这个定理之后,小明开始设计一些复杂的同余方程组X mod ai = bi 来调戏别人,结果是必然的,都失败了。
可是在这个过程中,小明发现有时并不一定要把ai和bi告诉你。他只需要告诉你,ai在区间 [1, X] 范围内每个值取一次时,有K个ai使bi等于0,或有K个ai使bi不等于0,最小的X就可以求出来了。
你来试试看吧!
这个简单的谜题就是中国剩余定理的来历。
在艰难地弄懂了这个定理之后,小明开始设计一些复杂的同余方程组X mod ai = bi 来调戏别人,结果是必然的,都失败了。
可是在这个过程中,小明发现有时并不一定要把ai和bi告诉你。他只需要告诉你,ai在区间 [1, X] 范围内每个值取一次时,有K个ai使bi等于0,或有K个ai使bi不等于0,最小的X就可以求出来了。
你来试试看吧!
Input
输入第一行为T,表示有T组测试数据。
每组数据包含两个整数Type和K,表示小明给出的条件。Type为0表示“有K个ai使bi等于0”,为1表示“有K个ai使bi不等于0”。
[Technical Specification]
1. 1 <= T <= 477
2. 1 <= K <= 47777, Type = 0 | 1
每组数据包含两个整数Type和K,表示小明给出的条件。Type为0表示“有K个ai使bi等于0”,为1表示“有K个ai使bi不等于0”。
[Technical Specification]
1. 1 <= T <= 477
2. 1 <= K <= 47777, Type = 0 | 1
Output
对每组数据,先输出为第几组数据,如果没有这样的数,输出“Illegal”,否则输出满足条件的最小的X,如果答案大于2^62, 则输出“INF”。
Sample Input
3 0 3 1 3 0 10
Sample Output
Case 1: 4 Case 2: 5 Case 3: 48
Source
题目分析:0的时候就是求反素数,直接DFS,见之前的文章,1的时候通过nlogn的预处理,可以O(1)查询
#include <cstdio>
#include <algorithm>
#define ull unsigned long long
using namespace std;
ull const INF = 1ull << 62 + 1;
int const LIM = 0x3fffffff;
int const MAX = 50000;
ull k, ans, ma;
bool flag;
int p[16] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47};
int re[MAX], num[MAX];
void DFS(int pos, ull val, ull num)
{
if(num > k || pos > 14)
return;
if(num == k)
{
flag = true;
ans = min(ans, val);
return;
}
for(int i = 1; i <= 62; i++)
{
if(val > ans / p[pos] || num * (i + 1) > k)
break;
val *= p[pos];
if(k % (num * (i + 1)) == 0)
DFS(pos + 1, val, num * (i + 1));
}
return;
}
void pre()
{
//re[i]记录的是与i互质的数的个数
//num[i]记录的是与i互质的个数中最小的那个
for(int i = 1; i <= MAX; i++)
{
num[i] = LIM;
re[i] = i - 1;
}
for(int i = 1; i <= MAX; i++)
for(int j = i + i; j <= MAX; j += i)
re[j] --;
for(int i = 1; i <= MAX; i++)
num[re[i]] = min(num[re[i]], i);
}
int main()
{
pre();
int T, ca = 1;
scanf("%d", &T);
while(T--)
{
int tp;
scanf("%d %llu", &tp, &k);
printf("Case %d: ", ca ++);
if(tp == 0)
{
ans = INF;
DFS(0, 1, 1);
if(!flag)
printf("Illegal\n");
else if(ans == INF)
printf("INF\n");
else
printf("%llu\n", ans);
}
else
{
if(num[k] == LIM)
printf("Illegal\n");
else
printf("%d\n",num[k]);
}
}
}