ZOJ 3911 Prime Query (线段树区间更新)

Prime Query

Time Limit: 1 Second       Memory Limit: 196608 KB

You are given a simple task. Given a sequence A[i] with N numbers. You have to perform Q operations on the given sequence.

Here are the operations:

  • A v l, add the value v to element with index l.(1<=V<=1000)
  • R a l r, replace all the elements of sequence with index i(l<=i<= r) with a(1<=a<=10^6) .
  • Q l r, print the number of elements with index i(l<=i<=r) and A[i] is a prime number

Note that no number in sequence ever will exceed 10^7.

Input

The first line is a signer integer T which is the number of test cases.

For each test case, The first line contains two numbers N and Q (1 <= N, Q <= 100000) - the number of elements in sequence and the number of queries.

The second line contains N numbers - the elements of the sequence.

In next Q lines, each line contains an operation to be performed on the sequence.

Output

For each test case and each query,print the answer in one line.

Sample Input
1
5 10
1 2 3 4 5
A 3 1      
Q 1 3
R 5 2 4
A 1 1
Q 1 1
Q 1 2
Q 1 4
A 3 5
Q 5 5
Q 1 5
Sample Output
2
1
2
4
0
4

Author:  HUA, Yiwei

Source: ZOJ Monthly, October 2015


题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5638

题目大意:三个操作,将下标为l的加v,把l到r的换成a,然后查询l到r闭区间内素数的个数

题目分析:离线素数筛,然后区间更新,注意pushdown的时候要判断下就行了

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1
using namespace std;
int const MAX = 1e5 + 5;
int const MAXM = 1e7 + 5;
int  a[MAX << 2], num[MAX << 2], p[MAXM];
bool noprime[MAXM];
int n, q, pnum;

void get_prime()
{
	noprime[0] = true;
	noprime[1] = true;	
	pnum = 0;
	for(int i = 2; i < MAXM; i++)
	{
		if(!noprime[i])
			p[pnum ++] = i;
		for(int j = 0;  j < pnum && (long long)i * p[j] < MAXM; j++)
		{
			noprime[i * p[j]] = true;
			if(i % p[j] == 0)
				break;
		}
	}
}

void PushUp(int rt)
{
	num[rt] = num[rt << 1] + num[rt << 1 | 1];
}

void PushDown(int ln, int rn, int rt)
{
	if(a[rt])
	{
		if(!noprime[a[rt]])
		{
			num[rt << 1] = ln;
			num[rt << 1 | 1] = rn;
		}
		else
			num[rt << 1] = num[rt << 1 | 1] = 0;
		a[rt << 1] = a[rt];
		a[rt << 1 | 1] = a[rt];
		a[rt] = 0;
	}
	return;
}

void Build(int l, int r, int rt)
{
	a[rt] = 0;
	if(l == r)
	{
		scanf("%d", &a[rt]);
		if(!noprime[a[rt]])
			num[rt] = 1;
		return;
	}
	int mid = (l + r) >> 1;
	Build(lson);
	Build(rson);
	PushUp(rt);
}

void Update1(int pos, int c, int l, int r, int rt)
{
	if(l == r)
	{
		a[rt] += c;
		num[rt] = (!noprime[a[rt]]) ? 1 : 0;
		return;
	}
	int mid = (l + r) >> 1;
	PushDown(mid - l + 1, r - mid, rt);
	if(mid >= pos)
		Update1(pos, c, lson);
	else
		Update1(pos, c, rson);
	PushUp(rt);
}

void Update2(int L, int R, int c, int l, int r, int rt)
{
	if(L <= l && r <= R)
	{
		a[rt] = c;
		num[rt] = (!noprime[a[rt]]) ? (r - l + 1) : 0;
		return;
	}
	int mid = (l + r) >> 1;
	PushDown(mid - l + 1, r - mid, rt);
	if(L <= mid)
		Update2(L, R, c, lson);
	if(mid < R)
		Update2(L, R, c, rson);
	PushUp(rt);
	return;
}

int Query(int L, int R, int l, int r, int rt)
{
	if(L <= l && r <= R)
		return num[rt];
	int mid = (l + r) >> 1, ans = 0;
	PushDown(mid - l + 1, r - mid, rt);
	if(L <= mid)
		ans += Query(L, R, lson);
	if(mid < R)
		ans += Query(L, R, rson);
	return ans;
}

int main()
{
	get_prime();
	int T;
	scanf("%d", &T);
	while(T --)
	{
		memset(num, 0, sizeof(num));
		scanf("%d %d", &n, &q);
		Build(1, n, 1);
		while(q --)
		{
			char s[2];
			scanf("%s", s);
			if(s[0] == 'A')
			{
				int v, l;
				scanf("%d %d", &v, &l);
				Update1(l, v, 1, n, 1);
			}
			else if(s[0] == 'R')
			{
				int v, l, r;
				scanf("%d %d %d", &v, &l, &r);
				Update2(l, r, v, 1, n, 1);	
			}
			else
			{
				int l, r;
				scanf("%d %d", &l, &r);
				printf("%d\n", Query(l, r, 1, n, 1));
			}
		}
	}
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值