问题描述
我们把一个数称为有趣的,当且仅当:
1. 它的数字只包含0, 1, 2, 3,且这四个数字都出现过至少一次。
2. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前。
3. 最高位数字不为0。
因此,符合我们定义的最小的有趣的数是2013。除此以外,4位的有趣的数还有两个:2031和2301。
请计算恰好有n位的有趣的数的个数。由于答案可能非常大,只需要输出答案除以1000000007的余数。
输入格式
输入只有一行,包括恰好一个正整数n (4 ≤ n ≤ 1000)。
输出格式
输出只有一行,包括恰好n 位的整数中有趣的数的个数除以1000000007的余数。
样例输入
4
样例输出
3
这道题用的dp动态规划思想,先考虑以下对符号串的分类,因为这道题中符合的数字应该是以2开头的,所以下面所有的符号都保证以2开头的
第一种符号串,只包含数字2
第二种符号串,只包含数字2和数字0
第三种符号串,只包含数字2和数字3
第四种符号串,只包含数字2,0和1,且满足0在1前头
第五种符号串,只包含数字2,0和3,且满足2在3前头
第六种符号串,包含数字2,0,1,3,且满足0在1前头,2在3前头
然后我们看他们的递推关系
第一种长度为L的符号串只有1种,记做f(L,S1)
第二种长度为L的符号串的个数记做f(L,S2)=f(L-1,S2)*2+f(L-1,S1),因为第二种符号串可以看做,长度为L-1的S2符号串在后面加上一个2或者一个0,还有可能是S1符号串加上了一个2。提示(第二种符号串中至少有一个0,而第一种符号串中没有0,以下以此类推)
第三种长度为L的符号串的个数记做f(L,S3)=f(L-1,S3)+f(L-1,S1),因为第二种符号串可以看做,长度为L-1的S2符号串在后面加上一个3,还有可能是S1符号串加上了一个3.
第四种长度为L的符号串的个数记做f(L,s4)=f(L-1,S4)*2+f(l-1,S2),因为第四种符号串可以看做,长度为L-1的S4符号串在后面加了一个2或者1,还有可能是S2符号串在后面加了一个1.
以此类推,最后可以得到长度为L的第六种符号串的长度。
代码如下
#include<bits/stdc++.h>
using namespace std;
const long long mod=1000000007;
long long f[1010][10];
int main()
{
int n;
cin>>n;
memset(f,0,sizeof(f));
f[1][1]=1;
for(int i=2; i<=n; ++i)
{
f[i][1]=1;
f[i][2]=(f[i-1][2]*2+f[i-1][1])%mod;
f[i][3]=(f[i-1][3]+f[i-1][1])%mod;
f[i][4]=(f[i-1][4]*2+f[i-1][2])%mod;
f[i][5]=(f[i-1][5]*2+f[i-1][2]+f[i-1][3])%mod;
f[i][6]=(f[i-1][6]*2+f[i-1][5]+f[i-1][4])%mod;
}
cout<<f[n][6];
}