ccf有趣的数 dp

问题描述

  我们把一个数称为有趣的,当且仅当:
  1. 它的数字只包含0, 1, 2, 3,且这四个数字都出现过至少一次。
  2. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前。
  3. 最高位数字不为0。
  因此,符合我们定义的最小的有趣的数是2013。除此以外,4位的有趣的数还有两个:2031和2301。
  请计算恰好有n位的有趣的数的个数。由于答案可能非常大,只需要输出答案除以1000000007的余数。

输入格式

  输入只有一行,包括恰好一个正整数n (4 ≤ n ≤ 1000)。

输出格式

  输出只有一行,包括恰好n 位的整数中有趣的数的个数除以1000000007的余数。

样例输入

4

样例输出

3

这道题用的dp动态规划思想,先考虑以下对符号串的分类,因为这道题中符合的数字应该是以2开头的,所以下面所有的符号都保证以2开头的

第一种符号串,只包含数字2

第二种符号串,只包含数字2和数字0

第三种符号串,只包含数字2和数字3

第四种符号串,只包含数字2,0和1,且满足0在1前头

第五种符号串,只包含数字2,0和3,且满足2在3前头

第六种符号串,包含数字2,0,1,3,且满足0在1前头,2在3前头

然后我们看他们的递推关系

第一种长度为L的符号串只有1种,记做f(L,S1)

第二种长度为L的符号串的个数记做f(L,S2)=f(L-1,S2)*2+f(L-1,S1),因为第二种符号串可以看做,长度为L-1的S2符号串在后面加上一个2或者一个0,还有可能是S1符号串加上了一个2。提示(第二种符号串中至少有一个0,而第一种符号串中没有0,以下以此类推)

第三种长度为L的符号串的个数记做f(L,S3)=f(L-1,S3)+f(L-1,S1),因为第二种符号串可以看做,长度为L-1的S2符号串在后面加上一个3,还有可能是S1符号串加上了一个3.

第四种长度为L的符号串的个数记做f(L,s4)=f(L-1,S4)*2+f(l-1,S2),因为第四种符号串可以看做,长度为L-1的S4符号串在后面加了一个2或者1,还有可能是S2符号串在后面加了一个1.

以此类推,最后可以得到长度为L的第六种符号串的长度。

 

代码如下

#include<bits/stdc++.h>
using namespace std;
const long long mod=1000000007;
long long f[1010][10];
int main()
{

    int n;
    cin>>n;
    memset(f,0,sizeof(f));
    f[1][1]=1;
    for(int i=2; i<=n; ++i)
    {

        f[i][1]=1;
        f[i][2]=(f[i-1][2]*2+f[i-1][1])%mod;
        f[i][3]=(f[i-1][3]+f[i-1][1])%mod;
        f[i][4]=(f[i-1][4]*2+f[i-1][2])%mod;
        f[i][5]=(f[i-1][5]*2+f[i-1][2]+f[i-1][3])%mod;
        f[i][6]=(f[i-1][6]*2+f[i-1][5]+f[i-1][4])%mod;
    }
    cout<<f[n][6];
}
 

 

 

 

 

 

关于CCF-CSP 2024年12月考试中的“跳房子”相关题目或内容,目前尚未有具体公开的信息表明该主题会出现在此次考试中。然而,“跳房子”类问题通常涉及动态规划、贪心算法或者路径优化等内容,在CSP或其他编程竞赛中较为常见。 以下是对此类问题可能设计的一些分析: ### 可能的设计方向 此类问题的核心在于模拟跳跃过程并寻找最优解法。常见的变种包括但不限于以下几个方面: - **最短步计算**:给定一系列位置点以及初始能量值,求达到终点所需的最少跳跃次[^1]。 - **最大覆盖范围**:通过调整每次跳跃的距离来最大化可访问区域的量[^2]。 - **资源管理型挑战**:除了考虑距离外还需兼顾消耗的能量或者其他约束条件(如时间限制),从而增加复杂度。 ### 解决方案概述 针对上述提到的各种可能性,可以采用如下方法应对: #### 动态规划 (Dynamic Programming, DP) 如果目标是最优策略下的某种极值,则DP往往是首选工具之一。定义状态转移方程时需注意边界情况处理及空间效率优化。 ```python def min_jumps(nums): n = len(nums) dp = [float('inf')] * n dp[0] = 0 for i in range(1, n): for j in range(i): if j + nums[j] >= i and dp[j] != float('inf'): dp[i] = min(dp[i], dp[j]+1) return dp[-1] if dp[-1]!=float('inf') else -1 ``` #### 贪婪算法 (Greedy Algorithm) 对于某些特定形式的问题来说,局部最优选择能够带来全局最佳效果;这时运用贪婪法则往往更加高效简洁。 ```python def can_reach_lastStoneWeight(stones): stones.sort(reverse=True) while len(stones)>1: first=stones.pop(0) second=(stones.pop(0))if stones else 0 diff=abs(first-second) if(diff>0): insert_pos=bisect.bisect_left(stones,diff) stones.insert(insert_pos,diff) return True if not stones or stones[0]==0 else False ``` ### 注意事项 实际比赛中遇到类似问题时需要注意以下几点: - 输入规模较大时应优先选用O(nlogn)甚至更低的时间复杂度算法; - 预先判断是否存在可行解以免徒劳运算浪费宝贵比赛时间; - 特殊测试用例准备充分以验证程序鲁棒性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值