图像识别及处理
ices_
本科生
展开
-
opencv对图像的旋转操作以及尺寸改变
图像水平和垂直翻转Mirror(horizontally = True)这个返回一个镜像图像水平翻转:image:image.Mirror(horizontally = True)垂直翻转image:image.Mirror(horizontally = Flase)顺时针或逆时针旋转直角Rotate90(clockwise = True/False),当clo原创 2017-07-31 12:52:56 · 3684 阅读 · 0 评论 -
openccv wx打开图片以及Bitmap格式显示操作
wx.Image 和wx.Bitmapwx.Image 用于加载和保存图片,而wx.Bitmap用来将图像显示在屏幕上另外:wx.Bitmap()显示图片是要求图片为Bitmap格式的,而不能是Image格式(1)image = wx.Image("image.png",wx.BITMAP_TYPE_PNG)时,显示图像要这样写:wx.StaticBitmap(panel,-1原创 2017-07-31 12:47:50 · 2747 阅读 · 0 评论 -
椒盐噪声及中值滤波处理
椒盐噪声也称为脉冲噪声,是图像中经常见到的一种噪声,它是一种随机出现的白点或者黑点,可能是亮的区域有黑色像素或是在暗的区域有白色像素(或是两者皆有)。盐和胡椒噪声的成因可能是影像讯号受到突如其来的强烈干扰而产生、类比数位转换器或位元传输错误等。例如失效的感应器导致像素值为最小值,饱和的感应器导致像素值为最大值。常用的去除这种噪声的有效手段是使用中值滤波器原创 2017-07-22 15:57:58 · 7348 阅读 · 0 评论 -
解决numpy版本太低与opencv版本不匹配的问题 (基于windows)
我之前安装的是numpy1.8的版本,然后安装了opencv3.2版本,我在python中import cv2报错,提示 如下module compiled against API version a but this version of numpy is 9也即是说numpy的版本相对于opencv3.2来说太低,可以将numpy 通过pip先卸载 pip uninst原创 2017-07-27 11:28:26 · 11383 阅读 · 0 评论 -
图像识别之使用模板处理图像的问题
使用模板处理图像的问题:边界问题:当处理图像边界元素时,卷积核与推向使用区域不能匹配,卷积核的中心与边界像素点对应,卷积运算将出现问题。三种处理办法:A.忽略边界元素,即处理后的图像将丢掉这些像素。B.保留原边界像素,即copy边界像素到处理后的图像。C.对称方法,将与边界像素相邻的元素对称到超出边界的另一边,然后进行卷积运算。常用模板:下一篇文章会对上述内容作原创 2017-07-28 13:58:12 · 1025 阅读 · 0 评论 -
图像处理基本概念(模板,卷积运算)
模板:矩阵方块,其数学含义是一种卷积运算卷积运算:可看做是加权求和的过程,使用到的图像区域中的每个像素分别于卷积核(权矩阵)的每个元素对应相乘,所有乘机之和作为区域中心像素的新值。卷积核:卷积时用到的权用一个矩阵表示,该矩阵与使用的图像区域大小相同,其行列都是奇数(这一点很重要)举个例子:一个3*3的像素区域R与卷积核G的卷积运算:R5(中心像素)=R1G1+R2G2+R3G3原创 2017-07-28 13:50:23 · 4443 阅读 · 0 评论 -
图像识别之卷积讲解
下面详细说明一下卷积的概念先来说明一下连续空间的卷积定义连续空间的卷积定义是f(x)与g(x)的卷积是f(t-x)g(x)在t从负无穷到正无穷 的积分值,t-x要在f(x)定义域内,所以看上去很大的积分实际上还是在一定范围内的。实际的过程就是f(x)先做一个Y轴的反转,然后再沿X轴平移t就是f(t-x),然后再把g(x)拿来,两者乘积低的值再积分,想象一下如果g(x)或者f(x)是个单原创 2017-07-28 14:20:42 · 2962 阅读 · 0 评论 -
numpy中的基本数据类型
对于科学计算来说,Python中自带的整型、浮点型和复数类型远远不够,因此NumPy中添加了许多数据类型。如下:NumPy中的基本数据类型名称描述bool用一个字节存储的布尔类型(True或False)inti由所在平台决定其大小的整数(一般为int32或int64)int8一个字节大小,-128 至 127原创 2017-07-28 14:44:48 · 1020 阅读 · 0 评论