CCF201312-4 有趣的数【动态规划】

试题编号: 201312-4
试题名称: 有趣的数
时间限制: 1.0s
内存限制: 256.0MB
问题描述:

问题描述

  我们把一个数称为有趣的,当且仅当:
  1. 它的数字只包含0, 1, 2, 3,且这四个数字都出现过至少一次。
  2. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前。
  3. 最高位数字不为0。
  因此,符合我们定义的最小的有趣的数是2013。除此以外,4位的有趣的数还有两个:2031和2301。
  请计算恰好有n位的有趣的数的个数。由于答案可能非常大,只需要输出答案除以1000000007的余数。

输入格式

  输入只有一行,包括恰好一个正整数n (4 ≤ n ≤ 1000)。

输出格式

  输出只有一行,包括恰好n 位的整数中有趣的数的个数除以1000000007的余数。

样例输入

4

样例输出

3

问题分析:用动态规划来解决。共有如下六种状态:

0、只含2

1、只含2、0

2、只含2、3

3、只含2、0、1

4、只含2、0、3

5、四种数字全部使用

输入位数,声明同等位数的数组,在每个元素里是6种状态中所包含的该状态下的“符合条件的数”的个数。(是二维数组) 然后用动态规划思想从最小位数开始逐层往上计算。即dp[i][j]表示第i位,符合条件j的,合法的数的个数。

例如:位数为i且只含2、0的整数可以由位数为i-1的只含2、0的整数通过在末尾添加0或者2得到,也可以由位数为i-1的只含2的整数在末尾添加0得到。

其余的状态转移方程以此类推。

要注意,2肯定是在首位的,因为2必须在3的前面,而0必须在1的前面,而且0不能在首位。

注意题目限制:. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前。

#include <iostream>
using namespace std;
//       0--用了2,剩0,1,3
//       1--用了0,2,剩1,3
//       2--用了2,3,剩0,1
//       3--用了0,1,2,剩3
//       4--用了0,2,3,剩1
//       5--全部用了
long long dp[1005][10];
int main()
{
	int mod=1000000007;
	int n;
	cin>>n;
	for(int i=0;i<6;i++)
	{
		dp[0][i]=0;
	}
	for(int i=1;i<=n;i++)
	{
		int j=i-1;
		dp[i][0]=1;
	    dp[i][1] = (dp[j][0] + dp[j][1] * 2) % mod;
        dp[i][2] = (dp[j][0] + dp[j][2]) % mod;
        dp[i][3] = (dp[j][1] + dp[j][3] * 2) % mod;
        dp[i][4] = (dp[j][1] + dp[j][2] + dp[j][4] * 2) % mod;
        dp[i][5] = (dp[j][3] + dp[j][4] + dp[j][5] * 2) % mod;

	}
	cout<<dp[n][5]<<endl;
	return 0;
}

 

展开阅读全文

没有更多推荐了,返回首页