原理
关于OpenCV的配置和基础用法,请参阅本专栏的其他文章:垚武田的OpenCV合集
以下的原理来自Richard Szeliski的书《Computer Vision: Algorithms and Applications》(《计算机视觉:算法和应用》)。
像素变换
图片处理的操作基本上就是一个传入一张或多张图片,然后输出一张结果图片的方法。
对某个图片对象进行的操作可以分为以下两大类:
- 点操作:像素变换
- 域操作:涉及到相邻的像素
这章主要讨论像素变换。在像素变换中,每个像素的计算结果只与输入的像素和其他参数有关,不与图片中的其他像素相关。像素变换的应用包括图片亮度、对比度调整,以及颜色校正和颜色变换等。
亮度和对比度调整
在亮度和对比度的线性调整中,像素变换的算法非常简单,就是一个简单的线性变换:
g
(
x
)
=
α
f
(
x
)
+
β
g(x) = \alpha f(x) + \beta
g(x)=αf(x)+β
- α > 0 \alpha > 0 α>0,为增强参数; β \beta β为偏移参数
- α \alpha α控制对比度; β \beta β用来控制亮度
- f ( x ) f(x) f(x)为转换前的像素, g ( x ) g(x) g(x)为转换后的像素
也可以用行列坐标的形式来表示像素:
g
(
i
,
j
)
=
α
f
(
i
,
j
)
+
β
g(i, j) = \alpha f(i ,j) + \beta
g(i,j)=αf(i,j)+β
- i i i和 j j j分别代表行号和列号
代码实现
首先导入图片并储存到Mat对象中。
//CommandLineParser对main函数输入的参数进行解析,最后的字符串代表以下意义:
//@input表示一个有顺序的参数,将其命名为input
//lena.jpg,代表input的默认值
//input image,是对input参数的解释,说明它是输入的图像
CommandLineParser parser(argc, argv, "{@input | lena.jpg | input image}");
Mat image{ imread(parser.get<String>("@input")) }; //获取参数解析中的input参数
if (image.empty()) {
//如果打开失败,则输出错误信息,并退出程序
cout << "无法打开图片!\n" << endl;
cout << "输入图片:" << argv[0] << "<参数错误>" << endl;
return -1;
}
接着,创建一个新的Mat对象来储存变换后的结果。这个新对象的所有值初始化为0,而且具有和原图像同样的大小和类型:
Mat new_image{ Mat::zeros(image.size(), image.type()) };
Mat对象的创建方法可以参阅专栏中的《【OpenCV C++20 学习笔记】基本图像容器——Mat》
然后,声明 α \alpha α和 β \beta β这两个参数,并让用户能够通过控制台输入它们的值:
double alpha{ 1.0 }; //对比度控制参数
int beta{ 0 }; //亮度控制参数
cout << "基础线性变换" << endl;
cout << "-----------" << endl;
cout << "* 输入alpha值 [1.0-3.0]:"; cin >> alpha;
cout << "* 输入beta值 [0-100]:"; cin >> beta;
现在,用一个嵌套的for循环语句,遍历原图片中的每一个像素,并对每一个像素都进行变换操作:
for (int y{ 0 }; y < image.rows; y++) { //遍历行
for (int x{ 0 }; x < image.cols; x++) { //遍历列
for (int c{ 0 }; c < image.channels(); c++) { //遍历颜色通道
new_image.at<Vec3b>(y, x)[c] =
saturate_cast<uchar>(alpha * image.at<Vec3b>(y, x)[c] + beta);
}
}
}
- 因为前面读取图片的时候,我们使用的是默认的BGR3通道格式。所以对于矩阵中的每一个数据项,我们用
Vec3b
数据类型来接收,并用下标c
对3个通道中的每个通道值进行访问,最终每个数值的访问都使用了y
(行数)、x
(列数)、c
(通道数); - 因为线性变换的计算可能使得结果超出原有类型的值域,或者变成其他类型(比如,当alpha为浮点数时,计算结果就会自动转换成浮点数)。所以,必须使用
saturate_cast
对最终结果进行类型转换。
最后,创建窗口分别展示原始图片和变换后的图片
imshow("原始图片", image);
imshow("新图片", new_image);
waitKey(0);
更简便的方法
除了使用for循环对矩阵中的所有值进行遍历和转换之外,还可以使用更加便利的转换方法:
image.convertTo(new_image, -1, alpha, beta);
正如我在《【OpenCV C++20 学习笔记】操作图片》一文中详细描述的那样,convertTo函数实际上就是在执行一个线性变化的操作。其函数原型如下:
void cv::Mat::convertTo(OutputArray m, int rtype, double alpha = 1, double beta = 0) const
其算法如下:
m
(
x
,
y
)
=
s
a
t
u
r
a
t
e
_
c
a
s
t
<
r
T
y
p
e
>
(
α
(
∗
t
h
i
s
)
(
x
,
y
)
+
β
)
m(x,y) = saturate\_cast< rType>(\alpha(*this)(x, y)+\beta)
m(x,y)=saturate_cast<rType>(α(∗this)(x,y)+β)
实质上就等于线性变化+类型转换的操作,即上一节代码中for循环体内的操作。所以上一节代码中的整个for循环,可以用convertTo
函数代替。
上一节的代码只是为了展示像素变换的原理,在实际应用中还是建议使用convertTo()函数直接进行变换。
结果展示
使用2.2的
α
\alpha
α值和50的
β
\beta
β值
结果如下:
γ \gamma γ校正及其实操案例
在这个案例中将运用另外一种亮度调整方法—— γ \gamma γ校正,来修复一张低曝光的照片。
线性变换的缺点
在上述线性变换的例子中,亮度的调整是通过给每个像素值加上或减去一个常量,即偏移参数
β
\beta
β。如果调整后的结果超出了值域,则会用saturate_cast
进行类型转换,使其仍然落在值域之中。
saturate_cast
的具体原理,请参阅本专栏中的《【OpenCV C++20学习笔记】矩阵上的掩码(mask)操作》中的“类型转换”小节
下面的直方图展示了偏移参数为80时,像素分布的改变:
- 灰色部分为图像的原始像素分布
- 黑色部分为调整后的像素分布
- 横坐标为每个颜色值
- 纵坐标为每个颜色值对应的像素个数
可以看到颜色值整体往右偏移了,而且最大值和最小值上的像素个数显著增加,这是值域调整的结果。
另一方面,对比度的调整在上例中是通过改变
α
\alpha
α值实现的。
α
\alpha
α越大,对比度越高;反之,对比度越低。下面的直方图展示了,当
α
\alpha
α值小于1的时候,像素分布的改变如下:
- 图例与上图相同
与上图对比,这里的黑色部分像被横向挤压了,颜色值的值域变窄了,像素分布也更加集中了。
通过这两张图我们也可以看到线性变换的一些缺点:
- 由于
saturate_cast
的值域控制,会丢失一些图片的信息,即原始值域会被截断,导致变换后的颜色值值域变窄 - 亮度的调整同时会影响图片的对比度,如第一张图中所示, β \beta β参数在偏移像素分布的同时,也使像素更加集中
- 变换后颜色值最大值和最小值处的像素分布会激增,会导致图片过曝
γ \gamma γ校正
γ
\gamma
γ校正使用非线性变换来调整图片的亮度,其原理如下:
O
=
(
I
255
)
γ
×
255
O= (\frac{I}{255})^\gamma \times 255
O=(255I)γ×255
- I I I为像素的原值颜色值
- O O O为像素变换后的颜色值
- γ \gamma γ为变换系数
变换结果
O
O
O和原始值
I
I
I之间由于是非线性的关系,所以并不是每个像素的变换效果都是一样的。下图显示在不同的
γ
\gamma
γ值下,
O
O
O 和
I
I
I之间的关系:
- 横坐标为原始值I
- 纵坐标为变换值O
可以看到,当 γ < 1 \gamma<1 γ<1的时候,原始的最小值(即I=0)的增加更多;反之,当 γ > 1 \gamma>1 γ>1时,原始的最小值增加更少。
低曝光图片矫正案例
下面两张图,左边是原图,右边是用线性变换矫正后的图片(
α
=
1.3
\alpha=1.3
α=1.3,
β
=
40
\beta=40
β=40):
图片的整体亮度被调高了,但是很明显,天空的细节也丢失了,显得有点过曝。这就是上面所说的saturate_cast
值域控制的结果。
下面是
γ
\gamma
γ校正(
γ
=
0.4
\gamma=0.4
γ=0.4)的结果:
效果高下立判!
原图、线性变换和
γ
\gamma
γ校正的像素分布直方图如下:
- 左图:线性变换后
- 中图:原始图片
- 右图: γ \gamma γ校正后
- 3幅图的y轴并不一致
可以看到,在原图中,左边的像素偏多,也就是颜色值低(暗部)的像素偏多。在线性矫正之后,即左图中,可以看到最右边有个到顶的颜色值,这就是值域控制后的最大颜色值的像素分布(saturate_cast
将所有超出最大值的变换结果都变成了最大值)。但是在
γ
\gamma
γ校正之后,即右图中,可以看到相对于原图往右偏移了,同时,暗部和亮部也发生了分布的改变。但是显然,暗部的变化更多(数量减少,且更分散),亮部的变化偏少。这就防止了图片的过曝。下图标注了对比的结果:
所以可以得出以下结论:
相对于线性变换,
γ
\gamma
γ校正在调整图片亮度上效果更好,也更能保留原始图片的细节
代码实现
在OpenCV中可以用LUT
函数实现
γ
\gamma
γ校正。
其逻辑就是:用非线性算法计算出所有颜色值变换后的值,储存到一个查询表中;然后,用查询表的值一一替换原始图片中对应的颜色值。
double gamma_{ 0.4 }; //确定gamma值
Mat lookUpTable(1, 256, CV_8U); //新建查询表
uchar* p = lookUpTable.ptr(); //获取查询表的指针,方便后面填充值
for (int i{ 0 }; i < 256; ++i) //填充查询表
p[i] = saturate_cast<uchar>(pow(i / 255.0, gamma_) * 255.0); //非线性转换算法
Mat res = image.clone(); //复制原始图片对象,作为储存变换结果的对象
LUT(image, lookUpTable, res); //按查询表中的值,替换原始图片中的值
使用查询表能够提高替换原图中所有颜色值的速度。
查询表原理及
LUT
函数的用法,可以参阅本专栏中的【OpenCV C++20 学习笔记】扫描图片数据一文。