本文始发于个人公众号:TechFlow,原创不易,求个关注
链接
难度
Medium
描述
Given n pairs of parentheses, write a function to generate all combinations
of well-formed parentheses.
给定n对括号,要求返回所有这些括号组成的不同的合法的字符串
For example, given n = 3, a solution set is:
[
"((()))",
"(()())",
"(())()",
"()(())",
"()()()"
]
题解
这道题目非常有意思,解法也很多,还是老规矩,我们先由易到难,先从最简单的方法开始入手。
我们来简单分析一下题目,n个括号对意味着字符串的长度是2n,我们利用排列组合可以计算出,所有的组合种数一共有 C 2 n n C_{2n}^n C2nn种。算一下会知道,这个数是很大的,也就是说我们哪怕一开始就知道答案,把答案遍历一遍也会有很高的耗时,所以这道题对于时间复杂度的要求应该不会很高。
暴力
能想到最简单的方法,当然是暴力,不要看不起这个朴素的算法,很多时候灵感都是从暴力当中获取的。但是这道题暴力不太容易写,因为会有一种无从入手的感觉,我们知道要暴力,但是并不知道应该怎样暴力。这道题不存在可以直接枚举的朴素元素,必须要我们拐个弯才行。
怎么拐弯呢,其实答案我刚才已经说出来了。n个括号对,也就是说一共2n个字符,我们可以枚举n个’(‘分别放在什么位置,剩下的自然就是’)'了。看起来很有道理,但是有一个问题,就是这个思路并没有办法通过循环直接实现。这其实已经进化成了一个搜索问题了,我们要搜索所有可以摆放括号的可能性。
如果你能从暴力方法跳跃到搜索问题,那么说明你离写出代码已经很接近了。如果不行,那么我建议你花点时间去学习一下搜索算法专题。
对于搜索问题而言,这已经很简单了,我们搜索的空间是明确的,2n个位置,搜索的内容,对于每个位置我们可以摆放’(‘也可以摆放’)’。那么代码自然而然呼之欲出:
def dfs(pos, left, right, n, ret, cur_str):
"""
pos: 当前枚举的位置
left: 已经放置的左括号的数量
right: 已经放置的右括号的数量
n: 括号的数量
ret: 放置答案的数组
cur_str: 当前的字符串
"""
if pos == 2*n:
ret.append(cur_str)
return
if left < n:
dfs(pos+1, left