R语言生存分析:Cox比例风险模型的诊断

110 篇文章 ¥59.90 ¥99.00
本文介绍如何使用R语言进行Cox比例风险模型的生存分析诊断,包括模型拟合、摘要信息查看、风险比例图绘制及比例风险检验和残差图等诊断工具的使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

R语言生存分析:Cox比例风险模型的诊断

生存分析是一种用于分析时间至事件发生的数据的统计方法,它广泛应用于医学、生物学和社会科学等领域。Cox比例风险模型是生存分析中常用的一种模型,它基于半参数的方法,可用于估计不同因素对事件发生的风险比。本文将介绍如何使用R语言进行Cox比例风险模型的诊断,并提供相应的源代码。

首先,我们需要准备用于分析的数据。假设我们有一个包含生存时间、事件发生状态和一些预测因素的数据集。以下是一个示例数据集的结构:

# 导入必要的包
library(survival)

# 创建示例数据集
data <- data.frame(
  time = c(10, 15, 20, 25, 30, 35, 40, 45, 50, 55),
  status = c(1, 1, 0, 1, 0, 1, 1, 0, 0, 1),
  age = c(50, 60, 45, 55, 65, 70, 75, 80, 85, 90),
  sex = c("M", "F", "F", "M", "M", "F", "M", "F", "M", "F")
)

在上述示例中,time表示生存时间,status表示事件发生状态(1表示事件发生,0表示事件未发生࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值