多对独立源汇共享同一网络的网络流问题

探讨在网络流中如何通过调整源点到汇点的流量来最大化总价值,同时考虑流量限制和价值获取之间的关系。提出了两个具体问题:一是寻找最优流量分配以达到最大价值;二是判断是否存在一种方案使得所有汇点的流量均不低于特定阈值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基本模型:

给出多对源点、汇点 si,ti si 只能流向 ti ,不能流向其他汇点。 但是所有源汇共用同一个网络。

问题一:

si 流向 ti 的流量为 flowi ,能够得到价值 kiflowi
求该网络能获得的最大价值。

(暂时只知道线性规划解法)
设u流向v的流量限制为 c(u,v) ,第i对源汇从u留向v的流量为 fi(u,v)
为了方便,连接从 ti si 无流量限制的边,则 si 流向 ti 的流量为 fi(ti,si)

目标函数

i=1nfi(ti,si)ki

约束条件
vfi(u,v)=vfi(v,u)

i=1nfi(u,v)c(u,v)

fi(u,v)0

问题二:

是否存在所有i满足 flowiki 的方案

只要把问题一的目标函数去掉,目标函数直接是 0
增加约束条件

fi(ti,si)ki

判断是否存在可行解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值