基本模型:
给出多对源点、汇点 si,ti 。 si 只能流向 ti ,不能流向其他汇点。 但是所有源汇共用同一个网络。
问题一:
si
流向
ti
的流量为
flowi
,能够得到价值
ki∗flowi
。
求该网络能获得的最大价值。
(暂时只知道线性规划解法)
设u流向v的流量限制为
c(u,v)
,第i对源汇从u留向v的流量为
fi(u,v)
为了方便,连接从
ti
到
si
无流量限制的边,则
si
流向
ti
的流量为
fi(ti,si)
目标函数
∑i=1nfi(ti,si)∗ki
约束条件
∑vfi(u,v)=∑vfi(v,u)
∑i=1nfi(u,v)≤c(u,v)
fi(u,v)≥0
问题二:
是否存在所有i满足 flowi≥ki 的方案
只要把问题一的目标函数去掉,目标函数直接是 0
增加约束条件
fi(ti,si)≥ki
判断是否存在可行解。