多商品流问题

本文探讨了多商品流问题(MCFP),涉及网络中商品分配的复杂优化问题,通过运输需求和边容量约束求解成本最小的流量配置。文章介绍了问题定义、关键约束及一个示例,展示了如何将列生成、拉格朗日松弛等方法应用于解决实际问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

多商品流问题

1 引言

多商品流问题(MCFP)处理的是网络中商品流从源头到目的地的分配问题。MCFPs和包括交通和电信在内的几个领域都高度相关。几十年来,许多研究人员对MCFPs进行了研究,提出了多种解决方案,如列生成、拉格朗日松弛、分支定界和Dantzig-Wolfe分解。

2 多商品流问题

MCFP似乎是几个单一商品流动问题的组合。然而,由于商品之间的相互作用,MCFP的复杂性远远高于单独解决单个商品流动问题。为了解决MCFPs问题,必须考虑两个必要的约束条件。第一个是运输需求,这意味着所有的商品都需要运输到目的地。二是边的容量约束。这意味着在每条边上的流量不能超过其容量。第一个约束本质上是一系列单一商品流动问题的总和。然而,第二个约束需要把所有的商品都考虑到一起,导致了商品间的相互影响。G=(V, E)是有向网络图。其中,VE分别是大小为nm的节点和边的集合。对于每条边l,都有成本c_{l}和容量容量cap_{l}。t种商品需要从出发地节点运输到目的地节点。用O (k)D(k)表示商品k的起点和目的节点。此外,d^{k}是商品k的运输需求。在此问题中,必须找到一个成本最小的最优流量分配,以满足运输需求和容量约束。因此,MCFP可以表述为:

式(1)为总成本的目标函数;式(2)和(3)分别为边容量约束方程和节点流平衡方程;式(4)为非负约束。

X^k=[x_1,...,x_m]^T,k=1,...,t       第k中商品每条边的流量

c=[c_1,...,c_m]^T                               每条边成本

cap=[cap_1,...,cap_m]^T                   每条边容量

B=[B_{il}]_{n\times m}                                   点边关联矩阵,对于第l条边 edge(i,j),设B_{il}=1B_{jl}=-1

b^k=[b_1^k,...,b_n^k]^T, k=1,...,t

3 Example

 X^k=[x_1,...,x_{10}]^T,k=1,2,3

c=[c_1,...,c_{10}]^T

B=[B_{il}]_{6\times 10}

该简单例子的目标函数值=43

References

### 商品问题解决方案 对于商品问题,在 MATLAB 中可以通过线性规划求解器 `linprog` 来实现。下面提供一个商品问题的简化模型以及相应的MATLAB代码。 #### 定义变量和参数 定义网络中的节点、边及其容量,每种商品的需求量,源节点和目标节点等基本信息: ```matlab % Network parameters nodes = {'A', 'B', 'C', 'D'}; edges = [{'A' 'B'}, {'A' 'C'}, {'B' 'C'}, {'B' 'D'}, {'C' 'D'}]; capacity = [10, 8, 5, 7, 9]; % Edge capacities % Commodity information commodities = struct('source', {}, 'sink', {}, 'demand', {}); commodities(1) = struct('source', 'A', 'sink', 'D', 'demand', 6); commodities(2) = struct('source', 'B', 'sink', 'C', 'demand', 4); nEdges = length(edges); nCommodities = numel(commodities); ``` #### 构建约束矩阵和向量 构建用于表示量守恒定律和其他条件的系数矩阵 A 和右侧常数 b: ```matlab % Initialize constraint matrix and vectors numVars = nEdges * nCommodities; Aeq = sparse([], [], [], numVars, sum(cellfun(@length, nodes))); beq = zeros(sum(cellfun(@length, nodes)), 1); for i = 1:nCommodities srcIdx = find(strcmp(nodes, commodities(i).source)); sinkIdx = find(strcmp(nodes, commodities(i).sink)); for j = 1:nEdges [~, fromNodeIdx] = ismember(edges{j}(1), nodes); [~, toNodeIdx] = ismember(edges{j}(2), nodes); rowOffset = cumsum([0 cellfun(@(x) length(x)-1, nodes)])(fromNodeIdx); colIndex = (i-1)*nEdges + j; if ~isempty(fromNodeIdx) Aeq(colIndex, rowOffset+toNodeIdx) = 1; end if strcmp(edges{j}{1}, nodes{srcIdx}) beq(rowOffset+srcIdx) = beq(rowOffset+srcIdx) - commodities(i).demand; elseif strcmp(edges{j}{2}, nodes{sinkIdx}) beq(rowOffset+sinkIdx) = beq(rowOffset+sinkIdx) + commodities(i).demand; end end end ``` #### 设置目标函数并调用 linprog 解决方案 设置成本最小化作为优化的目标,并通过内置函数解决问题: ```matlab f = ones(numVars, 1); % Assuming unit cost per edge traversal lb = zeros(numVars, 1); ub = repmat(capacity(:)', nCommodities, 1); [x, fval] = linprog(f, [], [], Aeq, beq, lb, ub); ``` 上述方法展示了如何利用MATLAB 的线性规划工具箱来处理商品问题[^1]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值