深度学习论文随记(二)---VGGNet模型解读
Very Deep Convolutional Networks forLarge-Scale Image Recognition
Author: K Simonyan , A Zisserman
Year: 2014
1、 导引
VGGNet是2014年ILSVRC竞赛的第二名,没错你没听错它是第二名,第一名是GoogLeNet(真不是我打错google,是谷歌为了纪念LeNet,所以用的大写L).为什么先讲VGG,因为它这个模型在多个迁移学习任务中的表现要优于googLeNet。而且,从图像中提取CNN特征,VGG模型是首选算法。它的缺点在于,参数量有140M之多,需要更大的存储空间。但是这个模型很有研究价值。
为什么叫VGG?
是牛津大学 Visual G

本文介绍了2014年的VGGNet模型,它在ILSVRC竞赛中获得亚军,虽然参数量大,但在迁移学习任务中有优秀表现。VGGNet因其作者来自Visual Geometry Group而得名,主要特点是使用3x3的小尺寸卷积核,通过堆叠增加网络深度。文章对比了不同结构的性能,强调了深度对模型效果的影响,并探讨了多尺度训练的方法,用于捕捉不同尺度的物体特征。
最低0.47元/天 解锁文章
6392

被折叠的 条评论
为什么被折叠?



