深度学习论文随记(四)ResNet 残差网络-2015年Deep Residual Learning for Image Recognition

本文介绍了ResNet残差网络的背景和动机,针对深度学习中出现的准确性下降问题(degradation),ResNet通过引入快捷连接解决了这一问题,使得网络可以更深层次而不会损失准确性。作者在ILSVRC2015等比赛中取得了显著成绩,证明了残差网络在深度学习中的有效性。此外,还探讨了模型分析和计算优化,以及残差网络的优化特性。
摘要由CSDN通过智能技术生成


深度学习论文随记(四)ResNet 残差网络

DeepResidual Learning for Image Recognition

Author:Kaiming He,  XiangyuZhang,  Shaoqing Ren,  Jian Sun,

 Microsoft Research

Year:2015


1、导引

之前文章谈到GoogLeNet和VGG,人们开始认为增加网络的层数,即让网络变深似乎能进一步提高分类任务的准确性。于是,微软研究院的何凯明团队提出了这样一个问题:

Is learning better networks as easy as stacking more layers?

然后他们通过增加层数就发现一个奇怪的现象:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值