首先可以分析出来要求单调下降子序列,那么下一步需要求满足最长的数量且不能重复,那么思考一下,能不能在求出最长序列的同时求出满足此长度不相同的序列呢?
(这种类型题和子字符串匹配比较类似,也是个人认为noip范围内最难的一种线性dp)
满足两个条件,线性不会产生后效性,开一个数组记录,那么就从i位向前找,凡是满足条件的就加入,凡是遇见相同值且长度相同就将前面的数组清零,这样讲比较模糊,请结合代码思考。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<iomanip>
#include<cmath>
#include<algorithm>
using namespace std;
int n,a[5001],b[5001],pre[5001];
int dp2[5001];
int main()
{
cin>>n;
for(int i=1;i<=n;++i)
cin>>a[i];
for(int i=1;i<=n;++i)
b[i]=1;
for(int i=1;i<=n;++i)
{
int l=0;
for(int j=1;j<i;++j)
{
if(a[j]>a[i]&&b[j]>l)
l=b[j];
}
b[i]=l+1;
if(b[i]==1) dp2[i]=1;
for(int j=1;j<i;++j)
{
if(a[j]>a[i]&&b[j]+1==b[i]) dp2[i]+=dp2[j];
if(a[j]==a[i]&&b[j]==b[i]) dp2[j]=0;
}
}
int maxx=0;
for(int i=1;i<=n;++i)
if(b[i]>maxx) maxx=b[i];
int ans=0;
for(int i=1;i<=n;++i)
if(maxx==b[i])ans+=dp2[i];
cout<<maxx<<" "<<ans;
return 0;
}