腾讯视频是如何给你高效精准推送的

本文探讨了腾讯视频如何通过长视频兴趣网络实现高效精准的个性化内容分发,利用用户播放行为的隐式反馈信号,构建深度神经网络模型,提升用户播放量、播放次数和时长。实验表明,兴趣网络在离线和在线实验中均取得了显著的效果提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:jeromeliang,腾讯 PCG 应用研究员

为了提升用户在腾讯视频 app 的内容消费人数,消费次数,消费时长,我们需要定向精准的内容分发,让用户以较小的时间成本,较好的用户体验获取平台能够提供的感兴趣内容。因此,如何高效精准地实现个性化内容分发是我们面临的一个主要的挑战。


一.背景

为了提升用户在腾讯视频 app 的内容消费人数,消费次数,消费时长,我们需要定向精准的内容分发,让用户以较小的时间成本,较好的用户体验获取平台能够提供的感兴趣内容。因此,如何高效精准地实现个性化内容分发是我们面临的一个主要的挑战,。腾讯视频内容分发的主要场景如下图一所示,当前,长视频内容推荐系统通过召回,精排,重排等阶段从候选内容池子中实时返回每个用户在每次请求最可能感兴趣的内容。其中精排阶段起关键作用,它决定最后展示给用户的少数内容是否足够准确匹配用户实时的兴趣。为了在精排阶段实时精准的预测用户的兴趣,我们需要充分的挖掘用户在腾讯视频的兴趣反馈信号,并对根据数据特点进行建模,准确挖掘隐藏在反馈信号和用户感兴趣内容之间的模式。为此,我们收集用户的隐式反馈信号,并设计符合长视频特点的兴趣网络。


二.方案

1.用户隐式反馈信号

腾讯视频用户的反馈信号有显示反馈信号和隐式反馈信号两部分,由于点赞等显示反馈信号极其稀疏,我们主要使用用户播放行为反馈的隐式信号。目前已经收集的播放反馈信息主要有用户播放的视频专辑,播放时间,播放总时长,播放次数,最新一集剧集的播放时长,按照退出播放器计算的播放总时长,观看的最大集数等。用户反馈信号采用实时上报的方式,某个用户的反馈信息如下图所示:


2.长视频兴趣网络

2.1 深度神经网络总体结构

2.2 兴趣网络结构
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值