基于基差套利或基差投机的期货策略开发与回测

期货市场是金融市场中重要的衍生品市场之一,具有高流动性和杠杆效应。基差是指现货价格与期货价格之间的差异,它反映了市场供求关系和交易者对未来价格的预期。基差套利和基差投机是常见的期货交易策略,可用于利用基差变化获取收益。

在本文中,我们将探讨如何使用Python量化交易库backtrader来开发、回测和评估基于基差的期货策略,并提供相应的源代码示例。本文将分为以下几个部分:策略设计、数据获取与处理、回测与评估。

  1. 策略设计
    基于基差的期货策略主要包括基差套利和基差投机两种类型。基差套利是通过买入低价合约并卖出高价合约来利用基差的价差进行套利。基差投机则是根据对基差变化的预测进行交易,以追求利润。

在backtrader中,我们可以定义一个继承自bt.Strategy的类来实现我们的期货策略。我们可以使用next()方法来定义策略的逻辑,根据当前市场状态进行买卖决策。具体的策略逻辑需要根据不同的基差类型进行设计和实现。

  1. 数据获取与处理
    在回测之前,我们需要获取历史期货数据并对其进行处理。backtrader提供了丰富的数据源接口,可以从CSV文件、Pandas DataFrame、MySQL等数据源中获取数据。

我们可以使用pandas库来读取期货数据,并将其转换为backtrader可用的格式。然后,我们可以使用Cerebro()函数创建回测引擎&#

期货全品种行情下载工具和行情重播API 期货市场全品种行情tick数据收集工具3.1 支持盘中实时行情和历史行情连续播,开盘时间申请到当前行情时间段也不会缺行情, 当数据服务器将文件历史行情播完成后,开始接着播放实时行情,直到通过python api 调用方法,通知服务器停止播实时行情。 目前不支持并发,对同一个品种多次调用播api,会导致播行情数据顺序错乱。 对不同品种多次调用播api,可能因为cpu占用过大,会导致服务器UI没有响应。后面升级版本会 完整的并发解决方案。 期货市场全品种行情tick数据收集工具3.0 (1)TCP网络连接由同步模式改为异步模式,解决某些网络状况无法连接数据采集服务器的问题 未来升级版本将优化性能 期货市场全品种行情tick数据收集工具2.9b 清理了不需要的.lib,不会再提示缺少ctp的dll文件,删除了不需要的方法 支持任意IP地址的连接,可以实现连接云主机运行的行情收集服务器,局域网里的行情收集服务器。 期货市场全品种行情tick数据收集工具2.9 修复了多个API进程之间调数据时互相影响 当前合约数约323个合约,最大范围1200个合约,视合约产品而定。 本例正式发布版本2.7 可以自由设置行情服务器 模拟simnow24小时行情服务器在交易日上午没有数据,要在下午4点之后才有数据。 模拟simnow实盘同步时间服务器,和实盘同步。 可改为期货公司的服务器IP,见“快期”软件设置“试和代理”中的行情IP地址 双击合约文件列表可打开分时图 TestPythonApi可以调用DataCollectServer收集的行情数据(给定合约和时间段) 2017.3.11
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值