论文浅尝 | 神经符号推理综述(下)

本文概述了神经驱动的符号推理方法,包括基于路径、图和矩阵的三种类别。重点介绍了Path-Ranking Algorithm、RNN融合关系的模型、DeepPath的强化学习应用以及MINERVA、Mutil-hop等方法,探讨了它们在知识图谱推理中的优势和局限性。
摘要由CSDN通过智能技术生成

笔记整理 | 许泽众,浙江大学在读博士


3、神经驱动的符号推理

相比于之前的两种类型,神经驱动的符号推理的目的是挖掘规则,而神经网络在其中扮演的作用是解决纯符号推理的不确定性,并且能够有效的减少搜索空间。这种类型的方法的基本思路是找到query的多跳邻居节点,然后根据概率从这些邻居节点中选择正确的答案。这类方法大致可以分为三类,基于路径的、基于图的和基于矩阵的。

3.1、基于路径的神经符号推理

如图是基于路径方法的基本方式,在每一步上都会选择一个可能的路径。

这一类的方法的较早尝试是Path-Ranking Algorithm(PRA),需要注意的是这个方法是纯symbolic的,但是其余方法大多借鉴了这个方法,所以先简要介绍一下这个方法。 核心思想是利用连接两个实体的路径去预测他们之间是否有潜在的关系。但是每条路径的重要程度不同,所以需要对每条路径的分配合适的权重。

给定头实体h和尾实体t,PRA通过执行具有l步长的重启算法的随机游走来获得从h到t的长度为l的路径,然后计算实体对(h ,t)遵循路径p时候的得分。最后,PRA通过将不同路径的分数作为对应特征值的线性回归模型来估计不同路径的权重。

PRA依赖KG中存在的关系来寻找路径,下面两篇文章就是通过不同的方式来添加KG中的关系,分别是利用web的文本信息和语义库中的单词来补充KG中的关系。

Reading the web with learned syntactic-semantic inference rules.

Improving learning and inference in a large knowledge-base using latent syntactic cues.

以上的文章只能处理见过的关系,同时算法中的路径生成,是针对每一种关系的,所以针对不同的关系,需要训练不同的模型分别计算每种关系对应的多条

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值