论文浅尝 | 基于对比置信度自适应的知识图谱错误检测(AAAI2024)

d430c5550e1032dac8eb42d91faf7110.png

笔记整理:曲晏林,天津大学硕士,研究方向为大模型

论文链接:https://arxiv.org/abs/2312.12108?context=cs.AI

发表会议:AAAI 2024

1. 动机

知识图谱(Knowledge Group, KG)由三元组(头部实体、关系、尾部实体)组成,广泛应用于下游任务,如问答和推荐系统。现有的KG如NELL和Knowledge Vault以自动方式连续提取三元组,这不可避免地引入了噪声。检测这些错误有可能提高KG的质量。

现有的KG误差检测工作可分为基于嵌入模型和基于路径模型。前者根据实体和关系的表示学习置信度分数。后者使用实体之间的路径来评估三元组的置信度。不同于链接预测的任务或三元组分类,错误检测侧重于检测整个无监督KG中的错误三元组,旨在捕获三元组的方差并准确估计其置信度。

目前的KG误差检测模型面临着巨大的挑战,因为噪声模式不可用,难以获得准确标记的噪声样本进行鲁棒监督。替换实体的负抽样方法在以往的研究中被广泛使用,尤其是基于嵌入的模型。然而,现实世界的场景经常引入与正确样本相关的令人困惑的噪声语义。因此,现有的工作需要一种有效的方法来识别更真实的噪声,并在KG中提取文本信息的全部潜力以进行错误检测。

2. 贡献</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值