论文浅尝 | Hybrid Transformer Fusion for Multimodal KG Completion

本文介绍了MKGformer框架,该框架通过M-Encoder实现视觉Transformer和文本Transformer的多层级融合,解决多模态知识图谱补全的通用性和模态噪声问题。M-Encoder包含前缀引导交互模块(PGI)减少模态异构性,以及关联感知融合模块(CAF)降低对无关图像的错误敏感性。实验结果显示,MKGformer在多模态链接预测和关系抽取任务上表现出优越性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

9c5bc60f37035a15929d5a3ed099c8bd.png

笔记整理:陈子强,天津大学硕士,研究方向为自然语言处理

论文链接:https://arxiv.org/pdf/2205.02357.pdf

动机

尽管多模态知识图谱补全较单模态知识图谱补全已经有了很大的改进,但仍然存在两个限制。(1)架构的通用性。不同的多模态知识图谱补全需要在不同的编码器架构之上建立特定的、单独参数化的融合模块。因此需要一个统一的模型用于各个多模态知识图谱补全任务。(2)模态噪声。当前的大部分多模态知识图谱,一个实体对应于多个图像,部分图像与实体无关,甚至包含大量噪声。

方法

针对动机中提到的两点不足,文章的方法分布两部分:

(1)论文提出提出MKGformer框架,用M-Encoder将视觉Transformer和文本Transformer进行多层级融合。可以构建一个通用的多模态知识图谱补全框架。

(2)对于模态包含的噪声信息。首先,在M-Encoder的自注意力模块提出一个粗粒度的前缀引导交互模块,为下一步减小模态异构性做好准备。其次,在M-Encoder的前馈神经网络部分提出关联感知模块,获取细粒度的图文表示,降低对无关图像的错误敏感性。

### 关于用于未对齐多模态语言序列的多模态Transformer模型 #### 多模态Transformer (MulT) 的设计原理 多模态Transformer (MulT) 是一种专门针对未对齐的多模态语言序列而设计的架构。该模型旨在处理不同形式的数据输入,如文本、音频和视频,并通过跨模态注意力机制实现这些数据的有效融合[^1]。 #### 跨模态注意力机制 在高层次上,MulT 采用来自多个方向成对的跨模态Transformer来进行前馈融合过程。每个跨模态Transformer负责学习两种模态特征间的相互作用,即通过计算它们之间的重要性权重来增强目标模态的信息表示。这一过程中,较低层次的特征被用来不断加强较高层次的目标模态表达,从而使得最终得到的表征更加鲁棒且具有更强的表现力[^2]。 #### 序列建模与预测 完成上述跨模态交互之后,所获得的融合特征会被送入到一个基于自注意力机制的序列模型中进一步加工。此阶段的任务是对之前产生的综合特征执行更深层次的理解以及做出相应的分类或其他类型的决策支持。整个流程不仅能够有效应对各种复杂的实际应用场景下的挑战,同时也为后续研究提供了新的思路和技术手段[^3]。 ```python import torch.nn as nn class MultiModalTransformer(nn.Module): def __init__(self, config): super().__init__() self.cross_modal_transformers = nn.ModuleList([ CrossModalAttention(config), ... ]) def forward(self, inputs): fused_features = [] for transformer in self.cross_modal_transformers: output = transformer(inputs) fused_features.append(output) final_output = combine_fused_features(fused_features) return final_output ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值