论文浅尝 | 编辑基于语言模型的知识图谱嵌入(AAAI2024)

b78965d598a0171d0d9ec6ce23a77bc7.png

笔记整理:曲晏林,天津大学硕士,研究方向为大语言模型

论文链接:https://arxiv.org/abs/2301.10405

发表会议:AAAI 2024

1. 动机

知识图谱(Knowledge Group, KG)由三元组(头部实体、关系、尾部实体)组成,广泛应用于下游任务,如问答和推荐系统。传统的图谱嵌入方法通常基于结构化信息,如 TransE、RotatE等,但难以表示长尾实体和动态实体。基于语言模型的图谱嵌入方法(PLM-based KGE)利用预训练语言模型捕获图谱结构,并生成更具信息量的表示。然而,PLM-based KGE通常作为静态模型部署,无法适应新知识或纠正错误信息。例如,在总统选举后,需要将图谱嵌入中的“美国总统”从“Donald Trump”更新为“Joe Biden”,这种静态特性使得 PLM-based KGE 无法适应动态变化的环境,限制了其在实际应用中的价值。因此,需要一种高效的图谱嵌入编辑方法,以便快速更新图谱嵌入中的知识,保持其准确性和时效性。

2. 贡献

本文的主要贡献有:

(1)我们提出了一个新的任务,即编辑基于语言模型的KG嵌入。提出的数据集任务可以通过知识编辑为改进KG嵌入开辟新的途径。

(2)我们引入了KGEditor,它可以有效地修改不正确的知识或添加新知识,而不会影响所学知识的其余部分。

(3)我们通过对四个数据集的深入分析进行了广泛的比较,并报告了具有深刻见解的实证结果,证明了所提出方法的有效性。设计了交互式对比学习,以对齐文本和结构信息的潜在表示。

3. 方法

任务定义:

任务包括两个子

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值