人脸方向学习(十二):Face Detection-Tiny-DSOD解读

整理的人脸系列学习经验:包括人脸检测、人脸关键点检测、人脸优选、人脸对齐、人脸特征提取等过程总结,有需要的可以参考,仅供学习,请勿盗用。https://blog.csdn.net/TheDayIn_CSDN/article/details/93199307

Tiny-DSOD解读

论文地址:https://arxiv.org/pdf/1807.11013.pdf
代码代地址(caffe):https://github.com/lyxok1/Tiny-DSOD

思路

需要寻找前后端人脸检测器模型,主要考虑在移动端部署,所以查看了新出的Tiny-DSOD模型,想尝试下性能,后续给出文章实验部分。

一、论文简介

Tiny-DSOD提出了两种高效结构:基于depthwise dense block的网络主干,基于depthwise-FPN的前端网络

主要工作:

1)将depthwise卷积和dense block结合,提出depthwise dense block(DDB)模块;
2)将depthwise卷积和FPN结合,提出D-FPN;
3)提出的DDB和D-FPN,搭建了Tiny-DSOD模型,取得了优于Tiny-YOLO、SqueezeDet、MobileNet-SSD等的效果。 

1、主干网络Depthwise Dense Blocks Based Backbone

主干网络结构如下

把深度可分离卷积(depth-wise separable convolution)引入到普通的Dense block,提出了两种DDB units,DDB-a和DDB-b

作者通过实验证明,DDB-b的性能远好于DDB-a,所以我们以b为例进行介绍。

(1)把输入channel压缩到growth rate g(对应DDB-b图的蓝色框部分,1x1的Conv)

(2)进行深度可分离卷积(对应DDB-b图的绿色部分,3x3的DW Conv)

(3)深度可分离卷积的输出直接concatenate到输入,无需额外的1×1projection。
 

2、Front end结构

整体网络结构:plain connection+dense connection

一般认为,深度学习模型浅层学习了目标的结构和分辨率的信息,高层学习了语义信息,而SSD和DSOD都是提取了六个feature map 进行预测,那么前面的,比如上图的38x38和19x19比较低层,此时网络还没学到足够的语义信息。

所以作者设计一个名为depthwise FPN(D-FPN)的轻量级FPN,用于将信息流从较深和较小的feature maps重定向到较浅的。由下采样(a downsampling path)和反向的上采样(a reverse upsampling path)组成,这种反向的上采样已经被很多文章证明其有效性,但是大部分都是用反卷积来实现,这大大增加了模型的复杂度,也使得模型难以收敛。作者使用简单的双线性插值层(a simple bilinear interpolation layer)和a depth-wise convolution对the top feature maps进行上采样,如下图右侧所示。
 

3、实验结果

Ablation Study on PASCAL VOC2007 test

(1)  DDB-b 优于DDB-a

(2)  D-FPN的有效性

(3) Overall growth rate增加, Accuracy上升

(4)  资源 (parameter-size & FLOPs) 和准确率(mAP) 的Trade-off-----Row(5)&(6)


PASCAL VOC2007 test

Examples on kitti

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值