bzoj4182 Shopping 购物 点分治+树形多重背包+dfs序+单调队列优化

题目链接:传送门(权限题)

大毒瘤QAQ
发现买过物品的商店构成一个联通块,所以钦定一个根,让所有买过物品的商店到根的路径上的商店都是买过物品的商店。
然后在上面跑树形背包,子状态设计:
d p [ i ] [ j ] dp[i][j] dp[i][j]表示选到 i i i号节点,已经花了 j j j块钱,所能达到的最大喜爱度。
用dfs实现的树形dp会TLE,考虑用dfs序来优化:
按照dfs序优化的套路,分不选当前节点和选当前节点两种情况。
倒序枚举dfs序,
当不选当前节点时,说明整棵子树都不能选,这个时候就从不属于这棵子树的dfs序最小的节点推过来。
用这个图来说明:
在这里插入图片描述
如果选当前节点,假设当前节点的dfs序为 i i i,就从dfs序为 i + 1 i+1 i+1的节点推到这个节点。
这里dfs序为 i + 1 i+1 i+1的节点和dfs序为i的节点在同一个联通块中qwq,因此正确性珂以保证。
用这张图来说明:
在这里插入图片描述
用dfs序优化完,发现时间复杂度仍然不对,只是优化了常数。
据毒瘤czh所说多重背包珂以单调队列优化。
考虑这样一个经典的多重背包方程( w [ i ] w[i] w[i]表示物品重量, v [ i ] v[i] v[i]表示物品价值):
d p [ j ] = m i n ( d p [ j − w [ i ] ∗ k ] + v [ i ] ∗ k ) dp[j]=min(dp[j-w[i]*k]+v[i]*k) dp[j]=min(dp[jw[i]k]+v[i]k)
a = j / w [ i ] , b = j a=j/w[i], b=j a=j/w[i],b=j% w [ i ] w[i] w[i],则方程珂以写成(边界条件略去):
d p [ j ] = m i n ( d p [ k ∗ w [ i ] + b ] + v [ i ] ∗ ( a − k ) ) dp[j]=min(dp[k*w[i]+b]+v[i]*(a-k)) dp[j]=min(dp[kw[i]+b]+v[i](ak))
分离变量和不变量,珂以得到:
d p [ j ] = m i n ( d p [ a ∗ k + b ] − v [ i ] ∗ k ) + v [ i ] ∗ a dp[j]=min(dp[a*k+b]-v[i]*k)+v[i]*a dp[j]=min(dp[ak+b]v[i]k)+v[i]a
对于 m i n min min里面的部分,维护一个单调队列,这样每次就珂以 O ( 1 ) O(1) O(1)推出。

注:这样每次需要枚举 m o d mod mod w [ i ] w[i] w[i]的余数和商,看起来多了一重循环,但是不难发现余数与商所组成的数与直接枚举是一一对应的,所以不会影响复杂度。而单调队列则免去了决策点的寻找,所以总体优化掉了一个 O ( n ) O(n) O(n)

但是这样时间复杂度仍然是 O ( n 2 m ) O(n^2m) O(n2m),还是过不了qwq。
思考这道题的本质,因为所有选出的点都是一个联通块,所以不可能根不选,选出的其他点分布在两个子树中qwq。
所以每次找树的重心,跑点分治,每次能把规模降到原来的一半,因此最终时间复杂度 O ( n m l o g n ) O(nmlogn) O(nmlogn)

代码

//yu xing chen xiao mei mei
//#pragma GCC optimize (3)
#include<stdio.h>
#include<cstring>
#include<algorithm>
#include<math.h>
#define re register int
#define rl register ll
using namespace std;
typedef long long ll;
int read() {
    re x=0,f=1;
    char ch=getchar();
    while(ch<'0' || ch>'9') {
        if(ch=='-')    f=-1;
        ch=getchar();
    }
    while(ch>='0' && ch<='9') {
        x=(x<<1)+(x<<3)+ch-'0';
        ch=getchar();
    }
    return x*f;
}
inline void write(int x) {
	if(x>9)	write(x/10);
	putchar(x%10+'0');
}
const int Size=505;
const int Maxn=4005;
namespace I_Love {

int n,m,cnt,w[Size],c[Size],d[Size],head[Size];
struct Edge {
	int u,v,next;
} G[Size<<1];
void AddEdge(int u,int v) {
	G[++cnt].u=u;
	G[cnt].v=v;
	G[cnt].next=head[u];
	head[u]=cnt;
}
int ans,sum,root,maxp[Size],siz[Size];
bool vis[Size];
void getrt(int x,int fa) {
	//找树的重心 
	siz[x]=1;
	maxp[x]=0;
	for(int i=head[x]; i; i=G[i].next) {
		int nxt=G[i].v;
		if(!vis[nxt] && nxt!=fa) {
			getrt(nxt,x);
			siz[x]+=siz[nxt];
			if(siz[nxt]>maxp[x]) {
				maxp[x]=siz[nxt];
			}
		}
	}
	maxp[x]=max(maxp[x],sum-siz[x]);
	if(maxp[x]<maxp[root])	root=x;
}
int tim,dfn[Size];
void dfs(int x,int fa) {
	//求出dfs序和每个节点的子树大小 
	dfn[++tim]=x;
	siz[x]=1;
	for(int i=head[x]; i; i=G[i].next) {
		int nxt=G[i].v;
		if(!vis[nxt] && nxt!=fa) {
			dfs(nxt,x);
			siz[x]+=siz[nxt];
		}
	}
}
int dp[Size][Maxn],Queue[Maxn];
#define calc(pos) dp[i+1][j+Queue[pos]*c[x]]+(k-Queue[pos])*w[x]
void solve(int x) {
	vis[x]=true;
	tim=0;
	dfs(x,0);
	memset(dp[tim+1],0,sizeof(dp[tim+1]));
    for(re i=tim; i; i--) {
    	int x=dfn[i];
    	//不选的情况 
    	for(re j=0; j<=m; j++) {
			dp[i][j]=dp[i+siz[x]][j];
		}
    	//选的情况 
    	for(re j=0; j<c[x]; j++) {	//枚举余数 
    		int hd=1,tl=0;
    		for(re k=0; k*c[x]+j<=m; k++) {		//枚举商 
    			while(hd<=tl && Queue[hd]<k-d[x])	hd++;
    			if(hd<=tl)	dp[i][j+k*c[x]]=max(dp[i][j+k*c[x]],calc(hd));
    			while(hd<=tl && dp[i+1][j+k*c[x]]>=calc(tl))	tl--;
    			Queue[++tl]=k;
			}
		}
	}
	//把所有经过根的情况取最大值 
	for(re i=1; i<=m; i++) {
		if(dp[1][i]>ans) {
			ans=dp[1][i];
		}
	}
	for(int i=head[x]; i; i=G[i].next) {
		int nxt=G[i].v;
		if(!vis[nxt]) {
			root=0;
			sum=siz[nxt];
			getrt(nxt,x);
			solve(root);
		}
	}
}
inline void clear() {
	tim=ans=root=cnt=0;
	memset(head,0,sizeof(head));
	memset(vis,0,sizeof(vis));
	maxp[0]=1e9;
}
void Kutori() {
//	freopen("1.in","r",stdin);
	int T=read();
	while(T--) {
		clear();
		n=read();
		m=read();
		for(re i=1; i<=n; i++)	w[i]=read();
		for(re i=1; i<=n; i++)	c[i]=read();
		for(re i=1; i<=n; i++)	d[i]=read();
		for(re i=1; i<n; i++) {
			int u=read();
			int v=read();
			AddEdge(u,v);
			AddEdge(v,u);
		}
		dfs(1,0);
		sum=n;
		getrt(1,0);
		solve(root);
		write(ans);
		putchar(10);
	}
}

}
int main() {
	I_Love::Kutori();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值