题目链接:传送门(权限题)
大毒瘤QAQ
发现买过物品的商店构成一个联通块,所以钦定一个根,让所有买过物品的商店到根的路径上的商店都是买过物品的商店。
然后在上面跑树形背包,子状态设计:
d
p
[
i
]
[
j
]
dp[i][j]
dp[i][j]表示选到
i
i
i号节点,已经花了
j
j
j块钱,所能达到的最大喜爱度。
用dfs实现的树形dp会TLE,考虑用dfs序来优化:
按照dfs序优化的套路,分不选当前节点和选当前节点两种情况。
倒序枚举dfs序,
当不选当前节点时,说明整棵子树都不能选,这个时候就从不属于这棵子树的dfs序最小的节点推过来。
用这个图来说明:
如果选当前节点,假设当前节点的dfs序为
i
i
i,就从dfs序为
i
+
1
i+1
i+1的节点推到这个节点。
这里dfs序为
i
+
1
i+1
i+1的节点和dfs序为i的节点在同一个联通块中qwq,因此正确性珂以保证。
用这张图来说明:
用dfs序优化完,发现时间复杂度仍然不对,只是优化了常数。
据毒瘤czh所说多重背包珂以单调队列优化。
考虑这样一个经典的多重背包方程(
w
[
i
]
w[i]
w[i]表示物品重量,
v
[
i
]
v[i]
v[i]表示物品价值):
d
p
[
j
]
=
m
i
n
(
d
p
[
j
−
w
[
i
]
∗
k
]
+
v
[
i
]
∗
k
)
dp[j]=min(dp[j-w[i]*k]+v[i]*k)
dp[j]=min(dp[j−w[i]∗k]+v[i]∗k)
令
a
=
j
/
w
[
i
]
,
b
=
j
a=j/w[i], b=j
a=j/w[i],b=j%
w
[
i
]
w[i]
w[i],则方程珂以写成(边界条件略去):
d
p
[
j
]
=
m
i
n
(
d
p
[
k
∗
w
[
i
]
+
b
]
+
v
[
i
]
∗
(
a
−
k
)
)
dp[j]=min(dp[k*w[i]+b]+v[i]*(a-k))
dp[j]=min(dp[k∗w[i]+b]+v[i]∗(a−k))
分离变量和不变量,珂以得到:
d
p
[
j
]
=
m
i
n
(
d
p
[
a
∗
k
+
b
]
−
v
[
i
]
∗
k
)
+
v
[
i
]
∗
a
dp[j]=min(dp[a*k+b]-v[i]*k)+v[i]*a
dp[j]=min(dp[a∗k+b]−v[i]∗k)+v[i]∗a
对于
m
i
n
min
min里面的部分,维护一个单调队列,这样每次就珂以
O
(
1
)
O(1)
O(1)推出。
注:这样每次需要枚举 m o d mod mod w [ i ] w[i] w[i]的余数和商,看起来多了一重循环,但是不难发现余数与商所组成的数与直接枚举是一一对应的,所以不会影响复杂度。而单调队列则免去了决策点的寻找,所以总体优化掉了一个 O ( n ) O(n) O(n)。
但是这样时间复杂度仍然是
O
(
n
2
m
)
O(n^2m)
O(n2m),还是过不了qwq。
思考这道题的本质,因为所有选出的点都是一个联通块,所以不可能根不选,选出的其他点分布在两个子树中qwq。
所以每次找树的重心,跑点分治,每次能把规模降到原来的一半,因此最终时间复杂度
O
(
n
m
l
o
g
n
)
O(nmlogn)
O(nmlogn)。
代码
//yu xing chen xiao mei mei
//#pragma GCC optimize (3)
#include<stdio.h>
#include<cstring>
#include<algorithm>
#include<math.h>
#define re register int
#define rl register ll
using namespace std;
typedef long long ll;
int read() {
re x=0,f=1;
char ch=getchar();
while(ch<'0' || ch>'9') {
if(ch=='-') f=-1;
ch=getchar();
}
while(ch>='0' && ch<='9') {
x=(x<<1)+(x<<3)+ch-'0';
ch=getchar();
}
return x*f;
}
inline void write(int x) {
if(x>9) write(x/10);
putchar(x%10+'0');
}
const int Size=505;
const int Maxn=4005;
namespace I_Love {
int n,m,cnt,w[Size],c[Size],d[Size],head[Size];
struct Edge {
int u,v,next;
} G[Size<<1];
void AddEdge(int u,int v) {
G[++cnt].u=u;
G[cnt].v=v;
G[cnt].next=head[u];
head[u]=cnt;
}
int ans,sum,root,maxp[Size],siz[Size];
bool vis[Size];
void getrt(int x,int fa) {
//找树的重心
siz[x]=1;
maxp[x]=0;
for(int i=head[x]; i; i=G[i].next) {
int nxt=G[i].v;
if(!vis[nxt] && nxt!=fa) {
getrt(nxt,x);
siz[x]+=siz[nxt];
if(siz[nxt]>maxp[x]) {
maxp[x]=siz[nxt];
}
}
}
maxp[x]=max(maxp[x],sum-siz[x]);
if(maxp[x]<maxp[root]) root=x;
}
int tim,dfn[Size];
void dfs(int x,int fa) {
//求出dfs序和每个节点的子树大小
dfn[++tim]=x;
siz[x]=1;
for(int i=head[x]; i; i=G[i].next) {
int nxt=G[i].v;
if(!vis[nxt] && nxt!=fa) {
dfs(nxt,x);
siz[x]+=siz[nxt];
}
}
}
int dp[Size][Maxn],Queue[Maxn];
#define calc(pos) dp[i+1][j+Queue[pos]*c[x]]+(k-Queue[pos])*w[x]
void solve(int x) {
vis[x]=true;
tim=0;
dfs(x,0);
memset(dp[tim+1],0,sizeof(dp[tim+1]));
for(re i=tim; i; i--) {
int x=dfn[i];
//不选的情况
for(re j=0; j<=m; j++) {
dp[i][j]=dp[i+siz[x]][j];
}
//选的情况
for(re j=0; j<c[x]; j++) { //枚举余数
int hd=1,tl=0;
for(re k=0; k*c[x]+j<=m; k++) { //枚举商
while(hd<=tl && Queue[hd]<k-d[x]) hd++;
if(hd<=tl) dp[i][j+k*c[x]]=max(dp[i][j+k*c[x]],calc(hd));
while(hd<=tl && dp[i+1][j+k*c[x]]>=calc(tl)) tl--;
Queue[++tl]=k;
}
}
}
//把所有经过根的情况取最大值
for(re i=1; i<=m; i++) {
if(dp[1][i]>ans) {
ans=dp[1][i];
}
}
for(int i=head[x]; i; i=G[i].next) {
int nxt=G[i].v;
if(!vis[nxt]) {
root=0;
sum=siz[nxt];
getrt(nxt,x);
solve(root);
}
}
}
inline void clear() {
tim=ans=root=cnt=0;
memset(head,0,sizeof(head));
memset(vis,0,sizeof(vis));
maxp[0]=1e9;
}
void Kutori() {
// freopen("1.in","r",stdin);
int T=read();
while(T--) {
clear();
n=read();
m=read();
for(re i=1; i<=n; i++) w[i]=read();
for(re i=1; i<=n; i++) c[i]=read();
for(re i=1; i<=n; i++) d[i]=read();
for(re i=1; i<n; i++) {
int u=read();
int v=read();
AddEdge(u,v);
AddEdge(v,u);
}
dfs(1,0);
sum=n;
getrt(1,0);
solve(root);
write(ans);
putchar(10);
}
}
}
int main() {
I_Love::Kutori();
return 0;
}