前言
若无特殊说明,默认只研究使函数可导的区间。
例如函数
y
=
ln
tan
x
y=\ln\tan x
y=lntanx,只研究
tan
x
>
0
\tan x>0
tanx>0,即
x
∈
(
k
π
,
k
π
+
π
2
)
x\in(k\pi,k\pi +\frac{\pi}{2})
x∈(kπ,kπ+2π)的情况。
1.1.2~1.2.1 导数的定义,导数的几何意义,几个常用函数的导数
令
Δ
x
\Delta x
Δx表示
x
x
x方向上的增量,
Δ
y
\Delta y
Δy表示
y
y
y方向上的增量。那么
Δ
y
Δ
x
\frac{\Delta y}{\Delta x}
ΔxΔy表示一定区间内的平均变化率。
函数
y
=
f
(
x
)
y=f(x)
y=f(x)在
x
=
x
0
x=x_0
x=x0处的导数记作
f
′
(
x
0
)
f'(x_0)
f′(x0)或
y
′
∣
x
=
x
0
y'|_{x=x_0}
y′∣x=x0,且满足:
f
′
(
x
0
)
=
lim
Δ
x
→
0
Δ
y
Δ
x
=
lim
Δ
x
→
0
f
(
x
0
+
x
)
−
f
(
x
0
)
Δ
x
f'(x_0)=\lim\limits_{\Delta x\to 0}\frac{\Delta y}{\Delta x}=\lim\limits_{\Delta x\to 0}\frac{f(x_0+x)-f(x_0)}{\Delta x}
f′(x0)=Δx→0limΔxΔy=Δx→0limΔxf(x0+x)−f(x0)。
f
′
(
x
0
)
f'(x_0)
f′(x0)的几何意义为
x
=
x
0
x=x_0
x=x0处的切线斜率。
当
x
x
x变化时,
f
′
(
x
)
f'(x)
f′(x)是关于
x
x
x的一个函数,称为导函数(简称导数)。
y
=
f
(
x
)
y=f(x)
y=f(x)的导函数也可记作
y
′
y'
y′。
需要注意的是,这里的切线是“过某点且方向与这点附近曲线相同的直线”,而非“与曲线仅有一个交点的直线”。
补充一个显然的东西: lim x → 0 a x = 0 \lim\limits_{x\to0}ax=0 x→0limax=0。( a a a为常数)
由定义来推一个基本初等函数的导数:
y
=
x
a
(
a
∈
N
∗
)
y=x^a (a\in N^*)
y=xa(a∈N∗)
y
′
=
lim
Δ
x
→
0
(
x
+
Δ
x
)
a
−
x
a
Δ
x
y'=\lim\limits_{\Delta x\to 0}\frac{(x+\Delta x)^a-x^a}{\Delta x}
y′=Δx→0limΔx(x+Δx)a−xa
=
lim
Δ
x
→
0
(
x
a
+
C
a
1
x
a
−
1
Δ
x
+
C
a
2
x
a
−
2
(
Δ
x
)
2
+
.
.
.
)
−
x
a
Δ
x
=\lim\limits_{\Delta x\to 0}\frac{(x^a+C_{a}^1{x^{a-1}\Delta x+C_a^2x^{a-2}(\Delta x)^2+...})-x^a}{\Delta x}
=Δx→0limΔx(xa+Ca1xa−1Δx+Ca2xa−2(Δx)2+...)−xa
=
lim
Δ
x
→
0
C
a
1
x
a
−
1
+
C
a
2
x
a
−
2
Δ
x
+
.
.
.
=\lim\limits_{\Delta x\to 0}C_a^1x^{a-1}+C_a^2x^{a-2}\Delta x+...
=Δx→0limCa1xa−1+Ca2xa−2Δx+...
=
lim
Δ
x
→
0
a
x
a
−
1
=\lim\limits_{\Delta x\to 0}ax^{a-1}
=Δx→0limaxa−1
=
a
x
a
−
1
=ax^{a-1}
=axa−1
选修2-2中把它推广到了
a
∈
Q
∗
a\in Q^*
a∈Q∗,不知道是怎么证明的
11-16补充:这个是用复合函数求导的,后面会说。
补充:
lim
x
→
0
cos
x
=
1
\lim\limits_{x\to 0}\cos x=1
x→0limcosx=1(显然)。
补充:夹逼定理:对于函数
f
(
x
)
,
g
(
x
)
,
h
(
x
)
f(x),g(x),h(x)
f(x),g(x),h(x),若
lim
x
→
x
0
f
(
x
)
=
lim
x
→
x
0
h
(
x
)
=
A
\lim\limits_{x\to x_0}f(x)=\lim\limits_{x\to x_0}h(x)=A
x→x0limf(x)=x→x0limh(x)=A,且存在
δ
>
0
\delta>0
δ>0,使
(
x
0
−
δ
,
x
0
)
∪
(
x
0
,
x
0
+
δ
)
(x_0-\delta,x_0)\cup(x_0,x_0+\delta)
(x0−δ,x0)∪(x0,x0+δ)内满足
f
(
x
)
≤
g
(
x
)
≤
h
(
x
)
f(x)\le g(x)\le h(x)
f(x)≤g(x)≤h(x),那么
lim
x
→
x
0
g
(
x
)
=
A
\lim\limits_{x\to x_0}g(x)=A
x→x0limg(x)=A。
用人话说就是
f
(
x
)
f(x)
f(x)和
h
(
x
)
h(x)
h(x)在
x
0
x_0
x0处的极限都为
A
A
A,
g
(
x
)
g(x)
g(x)在两函数之间,则
g
(
x
)
g(x)
g(x)在
x
0
x_0
x0处的极限也为
A
A
A。
这个证明用极限的定义应该是可以搞的,但是选修2-2中似乎没有极限的定义,所以这里就不写了。
极限的定义在我以前写的dp优化笔记的“键值函数化”部分有,但是那个东西在oj上,大概是看不到的((
11-22补充:oj上的公式炸了,czh又关了我修改题目的权限,所以oj上也看不到(((
由上,来证明
lim
x
→
0
sin
x
x
=
1
\lim\limits_{x\to 0}\frac{\sin x}{x}=1
x→0limxsinx=1:
画一个奇怪的图:
如图,设
A
O
=
O
B
=
1
,
∠
A
O
B
=
x
AO=OB=1,\angle AOB=x
AO=OB=1,∠AOB=x。则
A
B
=
sin
x
,
C
D
=
tan
x
AB=\sin x,CD=\tan x
AB=sinx,CD=tanx。(
x
∈
(
0
,
π
2
)
x\in (0,\frac{\pi}{2})
x∈(0,2π))
由
S
Δ
A
O
D
<
S
扇形
O
A
D
<
S
Δ
C
O
D
S_{\Delta AOD}<S_{扇形OAD}<S_{\Delta COD}
SΔAOD<S扇形OAD<SΔCOD得
sin
x
2
<
x
2
<
tan
x
2
\frac{\sin x}{2}<\frac{x}{2}<\frac{\tan x}{2}
2sinx<2x<2tanx,
即
sin
x
<
x
<
tan
x
\sin x<x<\tan x
sinx<x<tanx,
cos
x
<
sin
x
x
<
1
\cos x<\frac{\sin x}{x}<1
cosx<xsinx<1。
又
lim
x
→
0
cos
x
=
1
\lim\limits_{x\to 0}\cos x=1
x→0limcosx=1,所以有
lim
x
→
0
sin
x
x
=
1
\lim\limits_{x\to 0}\frac{\sin x}{x}=1
x→0limxsinx=1。
似乎还要从负数逼近0再证明一次,不过懒得写了((((
那么, lim x → 0 tan x x = lim x → 0 sin x x cos x = lim x → 0 1 cos x = 1 \lim\limits_{x\to 0}\frac{\tan x}{x}=\lim\limits_{x\to 0}\frac{\sin x}{x\cos x}=\lim\limits_{x\to 0}\frac{1}{\cos x}=1 x→0limxtanx=x→0limxcosxsinx=x→0limcosx1=1。
再推几个导数:
y
=
sin
x
y=\sin x
y=sinx
y
′
=
lim
Δ
x
→
0
sin
(
x
+
Δ
x
)
−
sin
x
Δ
x
y'=\lim\limits_{\Delta x\to 0}\frac{\sin(x+\Delta x)-\sin x}{\Delta x}
y′=Δx→0limΔxsin(x+Δx)−sinx
=
lim
Δ
x
→
0
sin
x
cos
Δ
x
+
cos
x
sin
Δ
x
−
sin
x
Δ
x
=\lim\limits_{\Delta x\to 0}\frac{\sin x\cos\Delta x+\cos x\sin\Delta x-\sin x}{\Delta x}
=Δx→0limΔxsinxcosΔx+cosxsinΔx−sinx
=
lim
Δ
x
→
0
cos
x
sin
Δ
x
Δ
x
=\lim\limits_{\Delta x\to 0}\frac{\cos x\sin\Delta x}{\Delta x}
=Δx→0limΔxcosxsinΔx (这步把
sin
x
cos
Δ
x
\sin x\cos\Delta x
sinxcosΔx和
−
sin
x
-\sin x
−sinx消掉了)
=
lim
Δ
x
→
0
cos
x
=\lim\limits_{\Delta x\to 0}\cos x
=Δx→0limcosx
=
cos
x
=\cos x
=cosx
y
=
cos
x
y=\cos x
y=cosx
y
′
=
lim
Δ
x
→
0
cos
(
x
+
Δ
x
)
−
cos
x
Δ
x
y'=\lim\limits_{\Delta x\to 0}\frac{\cos(x+\Delta x)-\cos x}{\Delta x}
y′=Δx→0limΔxcos(x+Δx)−cosx
=
lim
Δ
x
→
0
cos
x
cos
Δ
x
−
sin
x
sin
Δ
x
−
cos
x
Δ
x
=\lim\limits_{\Delta x\to 0}\frac{\cos x\cos\Delta x-\sin x\sin\Delta x-\cos x}{\Delta x}
=Δx→0limΔxcosxcosΔx−sinxsinΔx−cosx
=
lim
Δ
x
→
0
−
sin
x
sin
Δ
x
Δ
x
=\lim\limits_{\Delta x\to 0}\frac{-\sin x\sin\Delta x}{\Delta x}
=Δx→0limΔx−sinxsinΔx
=
lim
Δ
x
→
0
−
sin
x
=\lim\limits_{\Delta x\to 0}-\sin x
=Δx→0lim−sinx
=
−
sin
x
=-\sin x
=−sinx
y
=
tan
x
y=\tan x
y=tanx
y
′
=
lim
Δ
x
→
0
tan
(
x
+
Δ
x
)
−
tan
x
Δ
x
y'=\lim\limits_{\Delta x\to 0}\frac{\tan(x+\Delta x)-\tan x}{\Delta x}
y′=Δx→0limΔxtan(x+Δx)−tanx
=
lim
Δ
x
→
0
tan
x
+
tan
Δ
x
1
−
tan
x
tan
Δ
x
−
tan
x
Δ
x
=\lim\limits_{\Delta x\to 0}\large\frac{\frac{\tan x+\tan\Delta x}{1-\tan x\tan\Delta x}-\tan x}{\Delta x}
=Δx→0limΔx1−tanxtanΔxtanx+tanΔx−tanx
=
lim
Δ
x
→
0
tan
x
+
tan
Δ
x
−
tan
x
(
1
−
tan
x
tan
Δ
x
)
1
−
tan
x
tan
Δ
x
Δ
x
=\lim\limits_{\Delta x\to 0}\large\frac{\frac{\tan x+\tan\Delta x-\tan x(1-\tan x\tan\Delta x)}{1-\tan x\tan\Delta x}}{\Delta x}
=Δx→0limΔx1−tanxtanΔxtanx+tanΔx−tanx(1−tanxtanΔx)
=
lim
Δ
x
→
0
tan
Δ
x
+
tan
2
x
tan
Δ
x
1
−
tan
x
tan
Δ
x
Δ
x
=\lim\limits_{\Delta x\to 0}\large\frac{\frac{\tan\Delta x+\tan^2x\tan\Delta x}{1-\tan x\tan\Delta x}}{\Delta x}
=Δx→0limΔx1−tanxtanΔxtanΔx+tan2xtanΔx
=
lim
Δ
x
→
0
tan
Δ
x
(
1
+
tan
2
x
)
Δ
x
(
1
−
tan
x
tan
Δ
x
)
=\lim\limits_{\Delta x\to 0}\frac{\tan\Delta x(1+\tan^2x)}{\Delta x(1-\tan x\tan\Delta x)}
=Δx→0limΔx(1−tanxtanΔx)tanΔx(1+tan2x)
=
lim
Δ
x
→
0
1
+
tan
2
x
1
−
tan
x
tan
Δ
x
=\lim\limits_{\Delta x\to 0}\frac{1+\tan^2x}{1-\tan x\tan\Delta x}
=Δx→0lim1−tanxtanΔx1+tan2x
=
lim
Δ
x
→
0
1
+
tan
2
x
=\lim\limits_{\Delta x\to 0}1+\tan^2x
=Δx→0lim1+tan2x (
lim
Δ
x
→
0
tan
Δ
x
=
0
\lim\limits_{\Delta x\to 0}\tan\Delta x=0
Δx→0limtanΔx=0)
=
1
cos
2
x
=\frac{1}{\cos^2x}
=cos2x1
补充:反函数求导
假设有函数
y
=
f
(
x
)
y=f(x)
y=f(x),其反函数为
x
=
f
−
1
(
y
)
x=f^{-1}(y)
x=f−1(y)。
对反函数求导,
[
f
−
1
(
y
)
]
′
=
lim
Δ
y
→
0
Δ
x
Δ
y
[f^{-1}(y)]'=\lim\limits_{\Delta y\to 0}\frac{\Delta x}{\Delta y}
[f−1(y)]′=Δy→0limΔyΔx。
对原函数求导,
f
′
(
x
)
=
lim
Δ
x
→
0
Δ
y
Δ
x
=
1
lim
Δ
y
→
0
Δ
x
Δ
y
=
1
[
f
−
1
(
y
)
]
′
f'(x)=\lim\limits_{\Delta x\to 0}\frac{\Delta y}{\Delta x}=\large\frac{1}{\lim\limits_{\Delta y\to 0}\frac{\Delta x}{\Delta y}}=\frac{1}{[f^{-1}(y)]'}
f′(x)=Δx→0limΔxΔy=Δy→0limΔyΔx1=[f−1(y)]′1
因此,反函数的导数等于原函数导数的倒数。
补充:
e
e
e的定义:
e
=
lim
x
→
+
∞
(
1
+
1
x
)
x
=
lim
x
→
0
(
1
+
x
)
1
x
e=\lim\limits_{x\to +\infty}(1+\frac{1}{x})^x=\lim\limits_{x\to 0}(1+x)^\frac{1}{x}
e=x→+∞lim(1+x1)x=x→0lim(1+x)x1。
对
y
=
log
a
x
y=\log_ax
y=logax求导:
y
′
=
lim
Δ
x
→
0
log
a
(
x
+
Δ
x
)
−
log
a
x
Δ
x
y'=\lim\limits_{\Delta x\to 0}\frac{\log_a(x+\Delta x)-\log_ax}{\Delta x}
y′=Δx→0limΔxloga(x+Δx)−logax
=
lim
Δ
x
→
0
log
a
(
1
+
Δ
x
x
)
Δ
x
=\lim\limits_{\Delta x\to 0}\large\frac{\log_a(1+\frac{\Delta x}{x})}{\Delta x}
=Δx→0limΔxloga(1+xΔx)
=
lim
Δ
x
→
0
log
a
(
1
+
Δ
x
x
)
1
Δ
x
=\lim\limits_{\Delta x\to 0}\log_a(1+\frac{\Delta x}{x})^\frac{1}{\Delta x}
=Δx→0limloga(1+xΔx)Δx1
=
1
x
lim
Δ
x
→
0
log
a
(
1
+
Δ
x
x
)
x
Δ
x
=\frac{1}{x}\lim\limits_{\Delta x\to 0}\log_a(1+\frac{\Delta x}{x})^\frac{x}{\Delta x}
=x1Δx→0limloga(1+xΔx)Δxx
=
1
x
lim
Δ
x
→
0
log
a
e
=\frac{1}{x}\lim\limits_{\Delta x\to 0}\log_ae
=x1Δx→0limlogae
=
1
x
ln
a
=\frac{1}{x\ln a}
=xlna1
由反函数求导,对函数
f
(
x
)
=
a
x
f(x)=a^x
f(x)=ax求导:
f
′
(
x
)
=
1
[
f
−
1
(
y
)
]
′
=
1
1
y
ln
a
=
y
ln
a
=
a
x
ln
a
f'(x)=\frac{1}{[f^{-1}(y)]'}=\Large \frac{1}{\frac{1}{y\ln a}}\normalsize =y\ln a=a^{x}\ln a
f′(x)=[f−1(y)]′1=ylna11=ylna=axlna
特殊地, y = e x y=e^x y=ex的导数为 y ′ = e x y'=e^x y′=ex, y = ln x y=\ln x y=lnx的导数为 y ′ = 1 x y'=\frac{1}{x} y′=x1。
至此,选修2-2中基本初等函数的导数公式都证明完了。 //第一个不用证吧(((
有了求导方法,就可以方便地求出曲线上某点的切线方程。(先求出切线斜率,再把点坐标代入)
1.2.2 导数的运算法则
复合函数求导:假设
y
=
f
(
u
)
,
u
=
g
(
x
)
y=f(u),u=g(x)
y=f(u),u=g(x)。则
y
=
f
(
g
(
x
)
)
y=f(g(x))
y=f(g(x))。
y
y
y对
x
x
x求导有:
y
x
′
=
lim
Δ
x
→
0
Δ
y
Δ
x
y_x'=\lim\limits_{\Delta x\to 0}\frac{\Delta y}{\Delta x}
yx′=Δx→0limΔxΔy。
y
y
y对
u
u
u求导有:
y
u
′
=
lim
Δ
u
→
0
Δ
y
Δ
u
y_u'=\lim\limits_{\Delta u\to 0}\frac{\Delta y}{\Delta u}
yu′=Δu→0limΔuΔy。
u
u
u对
x
x
x求导有:
u
x
′
=
lim
Δ
x
→
0
Δ
u
Δ
x
u_x'=\lim\limits_{\Delta x\to 0}\frac{\Delta u}{\Delta x}
ux′=Δx→0limΔxΔu。
由于
f
,
g
f,g
f,g在可导的范围内是连续函数,所以
Δ
x
→
0
\Delta x\to 0
Δx→0和
Δ
u
→
0
\Delta u\to 0
Δu→0是等价的。因此有:
y
x
′
=
lim
Δ
x
→
0
Δ
y
Δ
x
=
lim
Δ
x
→
0
Δ
y
Δ
u
Δ
u
Δ
x
=
y
u
′
∗
u
x
′
y_x'=\lim\limits_{\Delta x\to 0}\frac{\Delta y}{\Delta x}=\lim\limits_{\Delta x\to 0}\frac{\Delta y}{\Delta u} \frac{\Delta u}{\Delta x}=y_u'*u_x'
yx′=Δx→0limΔxΔy=Δx→0limΔuΔyΔxΔu=yu′∗ux′。
尝试对
y
=
x
a
(
a
∈
Q
∗
)
y=x^a (a\in Q^*)
y=xa(a∈Q∗)求导:
y
=
x
a
=
e
a
ln
x
y=x^a=e^{a\ln x}
y=xa=ealnx。令
u
=
a
ln
x
u=a\ln x
u=alnx,则
y
=
e
u
y=e^u
y=eu。
y
′
=
(
e
u
)
′
∗
(
a
ln
x
)
′
=
e
u
∗
a
x
=
x
a
∗
a
x
=
a
x
a
−
1
y'=(e^u)'*(a\ln x)'=e^u*\frac{a}{x}=x^a*\frac{a}{x}=ax^{a-1}
y′=(eu)′∗(alnx)′=eu∗xa=xa∗xa=axa−1。
这与
a
∈
N
∗
a\in N^*
a∈N∗运用二项式定理的求导结果是一样的。
有了复合函数求导方式,可以求一些奇怪的导数:
例如
y
=
sin
(
a
x
+
b
)
y=\sin(ax+b)
y=sin(ax+b)
令
u
=
a
x
+
b
u=ax+b
u=ax+b,则
y
′
=
(
sin
u
)
′
∗
(
a
x
+
b
)
′
=
cos
u
∗
a
=
a
cos
(
a
x
+
b
)
y'=(\sin u)'*(ax+b)'=\cos u *a=a\cos(ax+b)
y′=(sinu)′∗(ax+b)′=cosu∗a=acos(ax+b)。
例如
y
=
ln
tan
x
y=\ln\tan x
y=lntanx
令
u
=
tan
x
u=\tan x
u=tanx,则
y
′
=
(
ln
u
)
′
∗
(
tan
x
)
′
=
1
u
∗
1
cos
2
x
=
cos
x
sin
x
∗
1
cos
2
x
=
1
sin
x
cos
x
y'=(\ln u)'*(\tan x)'=\frac{1}{u}*\frac{1}{\cos^2x}=\frac{\cos x}{\sin x}*\frac{1}{\cos^2x}=\frac{1}{\sin x\cos x}
y′=(lnu)′∗(tanx)′=u1∗cos2x1=sinxcosx∗cos2x1=sinxcosx1
函数的乘法求导:假设我们需要对
f
(
x
)
g
(
x
)
f(x)g(x)
f(x)g(x)求导。
由定义,
[
f
(
x
)
g
(
x
)
]
′
=
lim
Δ
x
→
0
f
(
x
+
Δ
x
)
g
(
x
+
Δ
x
)
−
f
(
x
)
g
(
x
)
Δ
x
[f(x)g(x)]'=\lim\limits_{\Delta x\to 0}\frac{f(x+\Delta x)g(x+\Delta x)-f(x)g(x)}{\Delta x}
[f(x)g(x)]′=Δx→0limΔxf(x+Δx)g(x+Δx)−f(x)g(x)
=
lim
Δ
x
→
0
f
(
x
+
Δ
x
)
g
(
x
+
Δ
x
)
−
f
(
x
+
Δ
x
)
g
(
x
)
+
f
(
x
+
Δ
x
)
g
(
x
)
−
f
(
x
)
g
(
x
)
Δ
x
=\lim\limits_{\Delta x\to 0}\frac{f(x+\Delta x)g(x+\Delta x)-f(x+\Delta x)g(x)+f(x+\Delta x)g(x)-f(x)g(x)}{\Delta x}
=Δx→0limΔxf(x+Δx)g(x+Δx)−f(x+Δx)g(x)+f(x+Δx)g(x)−f(x)g(x)
=
lim
Δ
x
→
0
f
(
x
+
Δ
x
)
g
(
x
+
Δ
x
)
−
g
(
x
)
Δ
x
+
g
(
x
)
f
(
x
+
Δ
x
)
−
f
(
x
)
Δ
x
=\lim\limits_{\Delta x\to 0}f(x+\Delta x)\frac{g(x+\Delta x)-g(x)}{\Delta x}+g(x)\frac{f(x+\Delta x)-f(x)}{\Delta x}
=Δx→0limf(x+Δx)Δxg(x+Δx)−g(x)+g(x)Δxf(x+Δx)−f(x)
由导数定义,有
f
′
(
x
)
=
lim
Δ
x
→
0
f
(
x
+
Δ
x
)
−
f
(
x
)
Δ
x
,
g
′
(
x
)
=
lim
Δ
x
→
0
g
(
x
+
Δ
x
)
−
g
(
x
)
Δ
x
f'(x)=\lim\limits_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x},g'(x)=\lim\limits_{\Delta x\to 0}\frac{g(x+\Delta x)-g(x)}{\Delta x}
f′(x)=Δx→0limΔxf(x+Δx)−f(x),g′(x)=Δx→0limΔxg(x+Δx)−g(x)。
故
[
f
(
x
)
g
(
x
)
]
′
[f(x)g(x)]'
[f(x)g(x)]′
=
lim
Δ
x
→
0
f
(
x
+
Δ
x
)
g
′
(
x
)
+
f
′
(
x
)
g
(
x
)
=\lim\limits_{\Delta x\to 0}f(x+\Delta x)g'(x)+f'(x)g(x)
=Δx→0limf(x+Δx)g′(x)+f′(x)g(x)
=
f
(
x
)
g
′
(
x
)
+
f
′
(
x
)
g
(
x
)
=f(x)g'(x)+f'(x)g(x)
=f(x)g′(x)+f′(x)g(x)
由复合函数求导可知 [ 1 g ( x ) ] ′ = − g ′ ( x ) g 2 ( x ) [\frac{1}{g(x)}]'=-\frac{g'(x)}{g^2(x)} [g(x)1]′=−g2(x)g′(x),然后由乘法求导法则易知 [ f ( x ) g ( x ) ] ′ = f ′ ( x ) g ( x ) − f ( x ) g ′ ( x ) g 2 ( x ) [\frac{f(x)}{g(x)}]'=\frac{f'(x)g(x)-f(x)g'(x)}{g^2(x)} [g(x)f(x)]′=g2(x)f′(x)g(x)−f(x)g′(x)。
于是我们又可以求一些奇怪的导数:
y
=
2
x
sin
(
2
x
+
5
)
y=2x\sin(2x+5)
y=2xsin(2x+5)
y
′
=
(
2
x
)
′
sin
(
2
x
+
5
)
+
2
x
[
sin
(
2
x
+
5
)
]
′
y'=(2x)'\sin(2x+5)+2x[\sin(2x+5)]'
y′=(2x)′sin(2x+5)+2x[sin(2x+5)]′
=
2
sin
(
2
x
+
5
)
+
2
x
∗
2
cos
(
2
x
+
5
)
=2\sin(2x+5)+2x*2\cos(2x+5)
=2sin(2x+5)+2x∗2cos(2x+5)
=
2
sin
(
2
x
+
5
)
+
4
x
cos
(
2
x
+
5
)
=2\sin(2x+5)+4x\cos(2x+5)
=2sin(2x+5)+4xcos(2x+5)。
y
=
x
3
−
1
sin
x
y=\large\frac{x^3-1}{\sin x}
y=sinxx3−1
y
′
=
3
x
2
sin
x
−
cos
x
(
x
3
−
1
)
sin
2
x
y'=\large \frac{3x^2\sin x-\cos x(x^3-1)}{\sin^2x}
y′=sin2x3x2sinx−cosx(x3−1)
1.3 导数在研究函数中的应用
考虑导数的定义:
f
′
(
x
)
=
lim
Δ
x
→
0
Δ
y
Δ
x
f'(x)=\lim\limits_{\Delta x\to 0}\frac{\Delta y}{\Delta x}
f′(x)=Δx→0limΔxΔy。现在假设
Δ
x
>
0
\Delta x>0
Δx>0。
当
f
′
(
x
0
)
>
0
f'(x_0)>0
f′(x0)>0时有
Δ
y
>
0
\Delta y>0
Δy>0,即
x
x
x增大时
y
y
y增大。
当
f
′
(
x
0
)
<
0
f'(x_0)<0
f′(x0)<0时有
Δ
y
<
0
\Delta y<0
Δy<0,即
x
x
x增大时
y
y
y减小。
因此,若
f
′
(
x
0
)
>
0
f'(x_0)>0
f′(x0)>0,则
f
(
x
)
f(x)
f(x)在
x
0
x_0
x0附近单调递增;若
f
′
(
x
0
)
<
0
f'(x_0)<0
f′(x0)<0,则
f
(
x
)
f(x)
f(x)在
x
0
x_0
x0附近单调递减。
所以,在区间
(
a
,
b
)
(a,b)
(a,b)内,若
f
′
(
x
)
>
0
f'(x)>0
f′(x)>0恒成立,则
f
(
x
)
f(x)
f(x)在
(
a
,
b
)
(a,b)
(a,b)内单调递增。若
f
′
(
x
)
<
0
f'(x)<0
f′(x)<0恒成立,则
f
(
x
)
f(x)
f(x)在
(
a
,
b
)
(a,b)
(a,b)内单调递减。
考虑这个图像:
如图,
x
0
x_0
x0左边函数单调递减,右边函数单调递增,即左边
f
′
(
x
)
<
0
f'(x)<0
f′(x)<0,右边
f
′
(
x
)
>
0
f'(x)>0
f′(x)>0。
此时
x
0
x_0
x0是在
x
0
x_0
x0附近的函数值最小的点,称为极小值点,
f
(
x
0
)
f(x_0)
f(x0)称为极小值。
同理,若
x
0
x_0
x0左边
f
′
(
x
)
>
0
f'(x)>0
f′(x)>0,右边
f
′
(
x
)
<
0
f'(x)<0
f′(x)<0,则
x
0
x_0
x0为在
x
0
x_0
x0附近的函数值最大的点,称为极大值点,此时
f
(
x
0
)
f(x_0)
f(x0)称为极大值。
需要注意:
1.极值
≠
\not=
= 最值,极值只能反映函数在某一点附近的大小情况。
2.
f
′
(
x
0
)
=
0
f'(x_0)=0
f′(x0)=0不一定说明
x
0
x_0
x0为极值点,例如
f
(
x
)
=
x
3
f(x)=x^3
f(x)=x3,
f
′
(
0
)
=
0
f'(0)=0
f′(0)=0,但
0
0
0不是极值点。
一般地,如果在区间
[
a
,
b
]
[a,b]
[a,b]上函数
y
=
f
(
x
)
y=f(x)
y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值。
证明:因为函数在每个点上都有定义,而且是闭区间,所以不会出现函数值为无穷的情况,也不会出现无限逼近某个函数值但取不到的情况。(感觉不太严谨,感性理解就好((
补充:可导一定连续,连续不一定可导。(“不可导”指导数不存在)
证明:“可导一定连续”的逆否命题为“不连续一定不可导”。
由导数的几何意义,不连续处可以作出斜率不同的两条切线,这与
f
′
(
x
)
f'(x)
f′(x)是关于
x
x
x的一个函数矛盾。所以不连续一定不可导。
y
=
∣
x
∣
y=|x|
y=∣x∣在
R
\R
R上连续,但在
x
=
0
x=0
x=0处不可导。
因此,可导一定连续,连续不一定可导。
假设某个函数
y
=
f
(
x
)
y=f(x)
y=f(x)在
[
a
,
b
]
[a,b]
[a,b]上可导,要求函数在
[
a
,
b
]
[a,b]
[a,b]上的最值,只要把所有极值和端点的函数值比较,就可以求出函数的最大值和最小值。
证明:取出所有的极值点
x
1
,
x
2
,
.
.
.
,
x
n
x_1,x_2,...,x_n
x1,x2,...,xn。不妨设
x
1
<
x
2
<
.
.
.
<
x
n
x_1<x_2<...<x_n
x1<x2<...<xn。
由极值点的定义可知
[
x
1
,
x
n
]
[x_1,x_n]
[x1,xn]内的非极值点的函数值都不是最值。
若
(
a
,
x
1
)
(a,x_1)
(a,x1)内有最值点
p
p
p,则
p
p
p也为极值点;若
(
x
n
,
b
)
(x_n,b)
(xn,b)内有最值点
q
q
q,则
q
q
q也为极值点。矛盾。
所以
(
a
,
x
1
)
(a,x_1)
(a,x1)和
(
x
n
,
b
)
(x_n,b)
(xn,b)内都不可能有最值点。
所以最值点只可能是
a
,
b
a,b
a,b和
x
1
,
x
2
,
.
.
.
,
x
n
x_1,x_2,...,x_n
x1,x2,...,xn。
由此,可以搞一些奇怪的事情。
求证:当
∣
x
∣
≤
2
|x|\le 2
∣x∣≤2时,
∣
x
3
−
3
x
∣
≤
2
|x^3-3x|\le 2
∣x3−3x∣≤2。
证明:令
f
(
x
)
=
x
3
−
3
x
f(x)=x^3-3x
f(x)=x3−3x,则
f
′
(
x
)
=
3
x
2
−
3
f'(x)=3x^2-3
f′(x)=3x2−3。
当
f
′
(
x
)
=
0
f'(x)=0
f′(x)=0时,
x
=
1
x=1
x=1或
−
1
-1
−1。故
1
,
−
1
1,-1
1,−1可能为
f
(
x
)
f(x)
f(x)的极值点。
f
(
−
1
)
=
2
,
f
(
1
)
=
−
2
f(-1)=2,f(1)=-2
f(−1)=2,f(1)=−2。
又因为
x
∈
[
−
2
,
2
]
x\in[-2,2]
x∈[−2,2],
f
(
−
2
)
=
−
2
,
f
(
2
)
=
2
f(-2)=-2,f(2)=2
f(−2)=−2,f(2)=2,
所以在
[
−
2
,
2
]
[-2,2]
[−2,2]内,
f
(
x
)
f(x)
f(x)最小值为
−
2
-2
−2,最大值为
2
2
2。
所以当
∣
x
∣
≤
2
|x|\le 2
∣x∣≤2时,
∣
x
3
−
3
x
∣
≤
2
|x^3-3x|\le 2
∣x3−3x∣≤2。