选修2-2导数学习笔记

本文详细介绍了导数的定义,包括导数的几何意义,以及如何利用极限求导数。通过实例展示了如何推导基本初等函数如指数函数、三角函数、对数函数的导数。此外,还讨论了导数在函数单调性中的应用,以及如何找到函数的极值。最后,文中提到了复合函数和乘积函数的求导法则,并举例说明了如何使用这些法则来求导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

若无特殊说明,默认只研究使函数可导的区间。
例如函数 y = ln ⁡ tan ⁡ x y=\ln\tan x y=lntanx,只研究 tan ⁡ x > 0 \tan x>0 tanx>0,即 x ∈ ( k π , k π + π 2 ) x\in(k\pi,k\pi +\frac{\pi}{2}) x(,+2π)的情况。

1.1.2~1.2.1 导数的定义,导数的几何意义,几个常用函数的导数

Δ x \Delta x Δx表示 x x x方向上的增量, Δ y \Delta y Δy表示 y y y方向上的增量。那么 Δ y Δ x \frac{\Delta y}{\Delta x} ΔxΔy表示一定区间内的平均变化率。
函数 y = f ( x ) y=f(x) y=f(x) x = x 0 x=x_0 x=x0处的导数记作 f ′ ( x 0 ) f'(x_0) f(x0) y ′ ∣ x = x 0 y'|_{x=x_0} yx=x0,且满足:
f ′ ( x 0 ) = lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 f ( x 0 + x ) − f ( x 0 ) Δ x f'(x_0)=\lim\limits_{\Delta x\to 0}\frac{\Delta y}{\Delta x}=\lim\limits_{\Delta x\to 0}\frac{f(x_0+x)-f(x_0)}{\Delta x} f(x0)=Δx0limΔxΔy=Δx0limΔxf(x0+x)f(x0)
f ′ ( x 0 ) f'(x_0) f(x0)的几何意义为 x = x 0 x=x_0 x=x0处的切线斜率。
x x x变化时, f ′ ( x ) f'(x) f(x)是关于 x x x的一个函数,称为导函数(简称导数)。 y = f ( x ) y=f(x) y=f(x)的导函数也可记作 y ′ y' y
需要注意的是,这里的切线是“过某点且方向与这点附近曲线相同的直线”,而非“与曲线仅有一个交点的直线”。

补充一个显然的东西: lim ⁡ x → 0 a x = 0 \lim\limits_{x\to0}ax=0 x0limax=0。( a a a为常数)

由定义来推一个基本初等函数的导数:
y = x a ( a ∈ N ∗ ) y=x^a (a\in N^*) y=xa(aN)
y ′ = lim ⁡ Δ x → 0 ( x + Δ x ) a − x a Δ x y'=\lim\limits_{\Delta x\to 0}\frac{(x+\Delta x)^a-x^a}{\Delta x} y=Δx0limΔx(x+Δx)axa
= lim ⁡ Δ x → 0 ( x a + C a 1 x a − 1 Δ x + C a 2 x a − 2 ( Δ x ) 2 + . . . ) − x a Δ x =\lim\limits_{\Delta x\to 0}\frac{(x^a+C_{a}^1{x^{a-1}\Delta x+C_a^2x^{a-2}(\Delta x)^2+...})-x^a}{\Delta x} =Δx0limΔx(xa+Ca1xa1Δx+Ca2xa2(Δx)2+...)xa
= lim ⁡ Δ x → 0 C a 1 x a − 1 + C a 2 x a − 2 Δ x + . . . =\lim\limits_{\Delta x\to 0}C_a^1x^{a-1}+C_a^2x^{a-2}\Delta x+... =Δx0limCa1xa1+Ca2xa2Δx+...
= lim ⁡ Δ x → 0 a x a − 1 =\lim\limits_{\Delta x\to 0}ax^{a-1} =Δx0limaxa1
= a x a − 1 =ax^{a-1} =axa1
选修2-2中把它推广到了 a ∈ Q ∗ a\in Q^* aQ,不知道是怎么证明的
11-16补充:这个是用复合函数求导的,后面会说。

补充: lim ⁡ x → 0 cos ⁡ x = 1 \lim\limits_{x\to 0}\cos x=1 x0limcosx=1(显然)。
补充:夹逼定理:对于函数 f ( x ) , g ( x ) , h ( x ) f(x),g(x),h(x) f(x),g(x),h(x),若 lim ⁡ x → x 0 f ( x ) = lim ⁡ x → x 0 h ( x ) = A \lim\limits_{x\to x_0}f(x)=\lim\limits_{x\to x_0}h(x)=A xx0limf(x)=xx0limh(x)=A,且存在 δ > 0 \delta>0 δ>0,使 ( x 0 − δ , x 0 ) ∪ ( x 0 , x 0 + δ ) (x_0-\delta,x_0)\cup(x_0,x_0+\delta) (x0δ,x0)(x0,x0+δ)内满足 f ( x ) ≤ g ( x ) ≤ h ( x ) f(x)\le g(x)\le h(x) f(x)g(x)h(x),那么 lim ⁡ x → x 0 g ( x ) = A \lim\limits_{x\to x_0}g(x)=A xx0limg(x)=A
用人话说就是 f ( x ) f(x) f(x) h ( x ) h(x) h(x) x 0 x_0 x0处的极限都为 A A A g ( x ) g(x) g(x)在两函数之间,则 g ( x ) g(x) g(x) x 0 x_0 x0处的极限也为 A A A
这个证明用极限的定义应该是可以搞的,但是选修2-2中似乎没有极限的定义,所以这里就不写了。
极限的定义在我以前写的dp优化笔记的“键值函数化”部分有,但是那个东西在oj上,大概是看不到的((
11-22补充:oj上的公式炸了,czh又关了我修改题目的权限,所以oj上也看不到(((

由上,来证明 lim ⁡ x → 0 sin ⁡ x x = 1 \lim\limits_{x\to 0}\frac{\sin x}{x}=1 x0limxsinx=1
画一个奇怪的图:
在这里插入图片描述
如图,设 A O = O B = 1 , ∠ A O B = x AO=OB=1,\angle AOB=x AO=OB=1,AOB=x。则 A B = sin ⁡ x , C D = tan ⁡ x AB=\sin x,CD=\tan x AB=sinxCD=tanx。( x ∈ ( 0 , π 2 ) x\in (0,\frac{\pi}{2}) x(0,2π)
S Δ A O D < S 扇形 O A D < S Δ C O D S_{\Delta AOD}<S_{扇形OAD}<S_{\Delta COD} SΔAOD<S扇形OAD<SΔCOD sin ⁡ x 2 < x 2 < tan ⁡ x 2 \frac{\sin x}{2}<\frac{x}{2}<\frac{\tan x}{2} 2sinx<2x<2tanx
sin ⁡ x < x < tan ⁡ x \sin x<x<\tan x sinx<x<tanx cos ⁡ x < sin ⁡ x x < 1 \cos x<\frac{\sin x}{x}<1 cosx<xsinx<1
lim ⁡ x → 0 cos ⁡ x = 1 \lim\limits_{x\to 0}\cos x=1 x0limcosx=1,所以有 lim ⁡ x → 0 sin ⁡ x x = 1 \lim\limits_{x\to 0}\frac{\sin x}{x}=1 x0limxsinx=1

似乎还要从负数逼近0再证明一次,不过懒得写了((((

那么, lim ⁡ x → 0 tan ⁡ x x = lim ⁡ x → 0 sin ⁡ x x cos ⁡ x = lim ⁡ x → 0 1 cos ⁡ x = 1 \lim\limits_{x\to 0}\frac{\tan x}{x}=\lim\limits_{x\to 0}\frac{\sin x}{x\cos x}=\lim\limits_{x\to 0}\frac{1}{\cos x}=1 x0limxtanx=x0limxcosxsinx=x0limcosx1=1

再推几个导数:
y = sin ⁡ x y=\sin x y=sinx
y ′ = lim ⁡ Δ x → 0 sin ⁡ ( x + Δ x ) − sin ⁡ x Δ x y'=\lim\limits_{\Delta x\to 0}\frac{\sin(x+\Delta x)-\sin x}{\Delta x} y=Δx0limΔxsin(x+Δx)sinx
= lim ⁡ Δ x → 0 sin ⁡ x cos ⁡ Δ x + cos ⁡ x sin ⁡ Δ x − sin ⁡ x Δ x =\lim\limits_{\Delta x\to 0}\frac{\sin x\cos\Delta x+\cos x\sin\Delta x-\sin x}{\Delta x} =Δx0limΔxsinxcosΔx+cosxsinΔxsinx
= lim ⁡ Δ x → 0 cos ⁡ x sin ⁡ Δ x Δ x =\lim\limits_{\Delta x\to 0}\frac{\cos x\sin\Delta x}{\Delta x} =Δx0limΔxcosxsinΔx (这步把 sin ⁡ x cos ⁡ Δ x \sin x\cos\Delta x sinxcosΔx − sin ⁡ x -\sin x sinx消掉了)
= lim ⁡ Δ x → 0 cos ⁡ x =\lim\limits_{\Delta x\to 0}\cos x =Δx0limcosx
= cos ⁡ x =\cos x =cosx

y = cos ⁡ x y=\cos x y=cosx
y ′ = lim ⁡ Δ x → 0 cos ⁡ ( x + Δ x ) − cos ⁡ x Δ x y'=\lim\limits_{\Delta x\to 0}\frac{\cos(x+\Delta x)-\cos x}{\Delta x} y=Δx0limΔxcos(x+Δx)cosx
= lim ⁡ Δ x → 0 cos ⁡ x cos ⁡ Δ x − sin ⁡ x sin ⁡ Δ x − cos ⁡ x Δ x =\lim\limits_{\Delta x\to 0}\frac{\cos x\cos\Delta x-\sin x\sin\Delta x-\cos x}{\Delta x} =Δx0limΔxcosxcosΔxsinxsinΔxcosx
= lim ⁡ Δ x → 0 − sin ⁡ x sin ⁡ Δ x Δ x =\lim\limits_{\Delta x\to 0}\frac{-\sin x\sin\Delta x}{\Delta x} =Δx0limΔxsinxsinΔx
= lim ⁡ Δ x → 0 − sin ⁡ x =\lim\limits_{\Delta x\to 0}-\sin x =Δx0limsinx
= − sin ⁡ x =-\sin x =sinx

y = tan ⁡ x y=\tan x y=tanx
y ′ = lim ⁡ Δ x → 0 tan ⁡ ( x + Δ x ) − tan ⁡ x Δ x y'=\lim\limits_{\Delta x\to 0}\frac{\tan(x+\Delta x)-\tan x}{\Delta x} y=Δx0limΔxtan(x+Δx)tanx
= lim ⁡ Δ x → 0 tan ⁡ x + tan ⁡ Δ x 1 − tan ⁡ x tan ⁡ Δ x − tan ⁡ x Δ x =\lim\limits_{\Delta x\to 0}\large\frac{\frac{\tan x+\tan\Delta x}{1-\tan x\tan\Delta x}-\tan x}{\Delta x} =Δx0limΔx1tanxtanΔxtanx+tanΔxtanx
= lim ⁡ Δ x → 0 tan ⁡ x + tan ⁡ Δ x − tan ⁡ x ( 1 − tan ⁡ x tan ⁡ Δ x ) 1 − tan ⁡ x tan ⁡ Δ x Δ x =\lim\limits_{\Delta x\to 0}\large\frac{\frac{\tan x+\tan\Delta x-\tan x(1-\tan x\tan\Delta x)}{1-\tan x\tan\Delta x}}{\Delta x} =Δx0limΔx1tanxtanΔxtanx+tanΔxtanx(1tanxtanΔx)
= lim ⁡ Δ x → 0 tan ⁡ Δ x + tan ⁡ 2 x tan ⁡ Δ x 1 − tan ⁡ x tan ⁡ Δ x Δ x =\lim\limits_{\Delta x\to 0}\large\frac{\frac{\tan\Delta x+\tan^2x\tan\Delta x}{1-\tan x\tan\Delta x}}{\Delta x} =Δx0limΔx1tanxtanΔxtanΔx+tan2xtanΔx
= lim ⁡ Δ x → 0 tan ⁡ Δ x ( 1 + tan ⁡ 2 x ) Δ x ( 1 − tan ⁡ x tan ⁡ Δ x ) =\lim\limits_{\Delta x\to 0}\frac{\tan\Delta x(1+\tan^2x)}{\Delta x(1-\tan x\tan\Delta x)} =Δx0limΔx(1tanxtanΔx)tanΔx(1+tan2x)
= lim ⁡ Δ x → 0 1 + tan ⁡ 2 x 1 − tan ⁡ x tan ⁡ Δ x =\lim\limits_{\Delta x\to 0}\frac{1+\tan^2x}{1-\tan x\tan\Delta x} =Δx0lim1tanxtanΔx1+tan2x
= lim ⁡ Δ x → 0 1 + tan ⁡ 2 x =\lim\limits_{\Delta x\to 0}1+\tan^2x =Δx0lim1+tan2x lim ⁡ Δ x → 0 tan ⁡ Δ x = 0 \lim\limits_{\Delta x\to 0}\tan\Delta x=0 Δx0limtanΔx=0
= 1 cos ⁡ 2 x =\frac{1}{\cos^2x} =cos2x1

补充:反函数求导
假设有函数 y = f ( x ) y=f(x) y=f(x),其反函数为 x = f − 1 ( y ) x=f^{-1}(y) x=f1(y)
对反函数求导, [ f − 1 ( y ) ] ′ = lim ⁡ Δ y → 0 Δ x Δ y [f^{-1}(y)]'=\lim\limits_{\Delta y\to 0}\frac{\Delta x}{\Delta y} [f1(y)]=Δy0limΔyΔx
对原函数求导, f ′ ( x ) = lim ⁡ Δ x → 0 Δ y Δ x = 1 lim ⁡ Δ y → 0 Δ x Δ y = 1 [ f − 1 ( y ) ] ′ f'(x)=\lim\limits_{\Delta x\to 0}\frac{\Delta y}{\Delta x}=\large\frac{1}{\lim\limits_{\Delta y\to 0}\frac{\Delta x}{\Delta y}}=\frac{1}{[f^{-1}(y)]'} f(x)=Δx0limΔxΔy=Δy0limΔyΔx1=[f1(y)]1
因此,反函数的导数等于原函数导数的倒数。

补充: e e e的定义: e = lim ⁡ x → + ∞ ( 1 + 1 x ) x = lim ⁡ x → 0 ( 1 + x ) 1 x e=\lim\limits_{x\to +\infty}(1+\frac{1}{x})^x=\lim\limits_{x\to 0}(1+x)^\frac{1}{x} e=x+lim(1+x1)x=x0lim(1+x)x1
y = log ⁡ a x y=\log_ax y=logax求导:
y ′ = lim ⁡ Δ x → 0 log ⁡ a ( x + Δ x ) − log ⁡ a x Δ x y'=\lim\limits_{\Delta x\to 0}\frac{\log_a(x+\Delta x)-\log_ax}{\Delta x} y=Δx0limΔxloga(x+Δx)logax
= lim ⁡ Δ x → 0 log ⁡ a ( 1 + Δ x x ) Δ x =\lim\limits_{\Delta x\to 0}\large\frac{\log_a(1+\frac{\Delta x}{x})}{\Delta x} =Δx0limΔxloga(1+xΔx)
= lim ⁡ Δ x → 0 log ⁡ a ( 1 + Δ x x ) 1 Δ x =\lim\limits_{\Delta x\to 0}\log_a(1+\frac{\Delta x}{x})^\frac{1}{\Delta x} =Δx0limloga(1+xΔx)Δx1
= 1 x lim ⁡ Δ x → 0 log ⁡ a ( 1 + Δ x x ) x Δ x =\frac{1}{x}\lim\limits_{\Delta x\to 0}\log_a(1+\frac{\Delta x}{x})^\frac{x}{\Delta x} =x1Δx0limloga(1+xΔx)Δxx
= 1 x lim ⁡ Δ x → 0 log ⁡ a e =\frac{1}{x}\lim\limits_{\Delta x\to 0}\log_ae =x1Δx0limlogae
= 1 x ln ⁡ a =\frac{1}{x\ln a} =xlna1

由反函数求导,对函数 f ( x ) = a x f(x)=a^x f(x)=ax求导:
f ′ ( x ) = 1 [ f − 1 ( y ) ] ′ = 1 1 y ln ⁡ a = y ln ⁡ a = a x ln ⁡ a f'(x)=\frac{1}{[f^{-1}(y)]'}=\Large \frac{1}{\frac{1}{y\ln a}}\normalsize =y\ln a=a^{x}\ln a f(x)=[f1(y)]1=ylna11=ylna=axlna

特殊地, y = e x y=e^x y=ex的导数为 y ′ = e x y'=e^x y=ex y = ln ⁡ x y=\ln x y=lnx的导数为 y ′ = 1 x y'=\frac{1}{x} y=x1

至此,选修2-2中基本初等函数的导数公式都证明完了。 //第一个不用证吧(((
在这里插入图片描述
有了求导方法,就可以方便地求出曲线上某点的切线方程。(先求出切线斜率,再把点坐标代入)

1.2.2 导数的运算法则

复合函数求导:假设 y = f ( u ) , u = g ( x ) y=f(u),u=g(x) y=f(u),u=g(x)。则 y = f ( g ( x ) ) y=f(g(x)) y=f(g(x))
y y y x x x求导有: y x ′ = lim ⁡ Δ x → 0 Δ y Δ x y_x'=\lim\limits_{\Delta x\to 0}\frac{\Delta y}{\Delta x} yx=Δx0limΔxΔy
y y y u u u求导有: y u ′ = lim ⁡ Δ u → 0 Δ y Δ u y_u'=\lim\limits_{\Delta u\to 0}\frac{\Delta y}{\Delta u} yu=Δu0limΔuΔy
u u u x x x求导有: u x ′ = lim ⁡ Δ x → 0 Δ u Δ x u_x'=\lim\limits_{\Delta x\to 0}\frac{\Delta u}{\Delta x} ux=Δx0limΔxΔu
由于 f , g f,g f,g在可导的范围内是连续函数,所以 Δ x → 0 \Delta x\to 0 Δx0 Δ u → 0 \Delta u\to 0 Δu0是等价的。因此有:
y x ′ = lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 Δ y Δ u Δ u Δ x = y u ′ ∗ u x ′ y_x'=\lim\limits_{\Delta x\to 0}\frac{\Delta y}{\Delta x}=\lim\limits_{\Delta x\to 0}\frac{\Delta y}{\Delta u} \frac{\Delta u}{\Delta x}=y_u'*u_x' yx=Δx0limΔxΔy=Δx0limΔuΔyΔxΔu=yuux
尝试对 y = x a ( a ∈ Q ∗ ) y=x^a (a\in Q^*) y=xa(aQ)求导:
y = x a = e a ln ⁡ x y=x^a=e^{a\ln x} y=xa=ealnx。令 u = a ln ⁡ x u=a\ln x u=alnx,则 y = e u y=e^u y=eu
y ′ = ( e u ) ′ ∗ ( a ln ⁡ x ) ′ = e u ∗ a x = x a ∗ a x = a x a − 1 y'=(e^u)'*(a\ln x)'=e^u*\frac{a}{x}=x^a*\frac{a}{x}=ax^{a-1} y=(eu)(alnx)=euxa=xaxa=axa1
这与 a ∈ N ∗ a\in N^* aN运用二项式定理的求导结果是一样的。
有了复合函数求导方式,可以求一些奇怪的导数:
例如 y = sin ⁡ ( a x + b ) y=\sin(ax+b) y=sin(ax+b)
u = a x + b u=ax+b u=ax+b,则 y ′ = ( sin ⁡ u ) ′ ∗ ( a x + b ) ′ = cos ⁡ u ∗ a = a cos ⁡ ( a x + b ) y'=(\sin u)'*(ax+b)'=\cos u *a=a\cos(ax+b) y=(sinu)(ax+b)=cosua=acos(ax+b)
例如 y = ln ⁡ tan ⁡ x y=\ln\tan x y=lntanx
u = tan ⁡ x u=\tan x u=tanx,则 y ′ = ( ln ⁡ u ) ′ ∗ ( tan ⁡ x ) ′ = 1 u ∗ 1 cos ⁡ 2 x = cos ⁡ x sin ⁡ x ∗ 1 cos ⁡ 2 x = 1 sin ⁡ x cos ⁡ x y'=(\ln u)'*(\tan x)'=\frac{1}{u}*\frac{1}{\cos^2x}=\frac{\cos x}{\sin x}*\frac{1}{\cos^2x}=\frac{1}{\sin x\cos x} y=(lnu)(tanx)=u1cos2x1=sinxcosxcos2x1=sinxcosx1

函数的乘法求导:假设我们需要对 f ( x ) g ( x ) f(x)g(x) f(x)g(x)求导。
由定义, [ f ( x ) g ( x ) ] ′ = lim ⁡ Δ x → 0 f ( x + Δ x ) g ( x + Δ x ) − f ( x ) g ( x ) Δ x [f(x)g(x)]'=\lim\limits_{\Delta x\to 0}\frac{f(x+\Delta x)g(x+\Delta x)-f(x)g(x)}{\Delta x} [f(x)g(x)]=Δx0limΔxf(x+Δx)g(x+Δx)f(x)g(x)
= lim ⁡ Δ x → 0 f ( x + Δ x ) g ( x + Δ x ) − f ( x + Δ x ) g ( x ) + f ( x + Δ x ) g ( x ) − f ( x ) g ( x ) Δ x =\lim\limits_{\Delta x\to 0}\frac{f(x+\Delta x)g(x+\Delta x)-f(x+\Delta x)g(x)+f(x+\Delta x)g(x)-f(x)g(x)}{\Delta x} =Δx0limΔxf(x+Δx)g(x+Δx)f(x+Δx)g(x)+f(x+Δx)g(x)f(x)g(x)
= lim ⁡ Δ x → 0 f ( x + Δ x ) g ( x + Δ x ) − g ( x ) Δ x + g ( x ) f ( x + Δ x ) − f ( x ) Δ x =\lim\limits_{\Delta x\to 0}f(x+\Delta x)\frac{g(x+\Delta x)-g(x)}{\Delta x}+g(x)\frac{f(x+\Delta x)-f(x)}{\Delta x} =Δx0limf(x+Δx)Δxg(x+Δx)g(x)+g(x)Δxf(x+Δx)f(x)
由导数定义,有 f ′ ( x ) = lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x , g ′ ( x ) = lim ⁡ Δ x → 0 g ( x + Δ x ) − g ( x ) Δ x f'(x)=\lim\limits_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x},g'(x)=\lim\limits_{\Delta x\to 0}\frac{g(x+\Delta x)-g(x)}{\Delta x} f(x)=Δx0limΔxf(x+Δx)f(x),g(x)=Δx0limΔxg(x+Δx)g(x)
[ f ( x ) g ( x ) ] ′ [f(x)g(x)]' [f(x)g(x)]
= lim ⁡ Δ x → 0 f ( x + Δ x ) g ′ ( x ) + f ′ ( x ) g ( x ) =\lim\limits_{\Delta x\to 0}f(x+\Delta x)g'(x)+f'(x)g(x) =Δx0limf(x+Δx)g(x)+f(x)g(x)
= f ( x ) g ′ ( x ) + f ′ ( x ) g ( x ) =f(x)g'(x)+f'(x)g(x) =f(x)g(x)+f(x)g(x)

由复合函数求导可知 [ 1 g ( x ) ] ′ = − g ′ ( x ) g 2 ( x ) [\frac{1}{g(x)}]'=-\frac{g'(x)}{g^2(x)} [g(x)1]=g2(x)g(x),然后由乘法求导法则易知 [ f ( x ) g ( x ) ] ′ = f ′ ( x ) g ( x ) − f ( x ) g ′ ( x ) g 2 ( x ) [\frac{f(x)}{g(x)}]'=\frac{f'(x)g(x)-f(x)g'(x)}{g^2(x)} [g(x)f(x)]=g2(x)f(x)g(x)f(x)g(x)

于是我们又可以求一些奇怪的导数:
y = 2 x sin ⁡ ( 2 x + 5 ) y=2x\sin(2x+5) y=2xsin(2x+5)
y ′ = ( 2 x ) ′ sin ⁡ ( 2 x + 5 ) + 2 x [ sin ⁡ ( 2 x + 5 ) ] ′ y'=(2x)'\sin(2x+5)+2x[\sin(2x+5)]' y=(2x)sin(2x+5)+2x[sin(2x+5)]
= 2 sin ⁡ ( 2 x + 5 ) + 2 x ∗ 2 cos ⁡ ( 2 x + 5 ) =2\sin(2x+5)+2x*2\cos(2x+5) =2sin(2x+5)+2x2cos(2x+5)
= 2 sin ⁡ ( 2 x + 5 ) + 4 x cos ⁡ ( 2 x + 5 ) =2\sin(2x+5)+4x\cos(2x+5) =2sin(2x+5)+4xcos(2x+5)

y = x 3 − 1 sin ⁡ x y=\large\frac{x^3-1}{\sin x} y=sinxx31
y ′ = 3 x 2 sin ⁡ x − cos ⁡ x ( x 3 − 1 ) sin ⁡ 2 x y'=\large \frac{3x^2\sin x-\cos x(x^3-1)}{\sin^2x} y=sin2x3x2sinxcosx(x31)

1.3 导数在研究函数中的应用

考虑导数的定义: f ′ ( x ) = lim ⁡ Δ x → 0 Δ y Δ x f'(x)=\lim\limits_{\Delta x\to 0}\frac{\Delta y}{\Delta x} f(x)=Δx0limΔxΔy。现在假设 Δ x > 0 \Delta x>0 Δx>0
f ′ ( x 0 ) > 0 f'(x_0)>0 f(x0)>0时有 Δ y > 0 \Delta y>0 Δy>0,即 x x x增大时 y y y增大。
f ′ ( x 0 ) < 0 f'(x_0)<0 f(x0)<0时有 Δ y < 0 \Delta y<0 Δy<0,即 x x x增大时 y y y减小。
因此,若 f ′ ( x 0 ) > 0 f'(x_0)>0 f(x0)>0,则 f ( x ) f(x) f(x) x 0 x_0 x0附近单调递增;若 f ′ ( x 0 ) < 0 f'(x_0)<0 f(x0)<0,则 f ( x ) f(x) f(x) x 0 x_0 x0附近单调递减。
所以,在区间 ( a , b ) (a,b) (a,b)内,若 f ′ ( x ) > 0 f'(x)>0 f(x)>0恒成立,则 f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)内单调递增。若 f ′ ( x ) < 0 f'(x)<0 f(x)<0恒成立,则 f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)内单调递减。

考虑这个图像:

如图, x 0 x_0 x0左边函数单调递减,右边函数单调递增,即左边 f ′ ( x ) < 0 f'(x)<0 f(x)<0,右边 f ′ ( x ) > 0 f'(x)>0 f(x)>0
此时 x 0 x_0 x0是在 x 0 x_0 x0附近的函数值最小的点,称为极小值点, f ( x 0 ) f(x_0) f(x0)称为极小值。
同理,若 x 0 x_0 x0左边 f ′ ( x ) > 0 f'(x)>0 f(x)>0,右边 f ′ ( x ) < 0 f'(x)<0 f(x)<0,则 x 0 x_0 x0为在 x 0 x_0 x0附近的函数值最大的点,称为极大值点,此时 f ( x 0 ) f(x_0) f(x0)称为极大值。
需要注意:
1.极值 ≠ \not= = 最值,极值只能反映函数在某一点附近的大小情况。
2. f ′ ( x 0 ) = 0 f'(x_0)=0 f(x0)=0不一定说明 x 0 x_0 x0为极值点,例如 f ( x ) = x 3 f(x)=x^3 f(x)=x3 f ′ ( 0 ) = 0 f'(0)=0 f(0)=0,但 0 0 0不是极值点。

一般地,如果在区间 [ a , b ] [a,b] [a,b]上函数 y = f ( x ) y=f(x) y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值。
证明:因为函数在每个点上都有定义,而且是闭区间,所以不会出现函数值为无穷的情况,也不会出现无限逼近某个函数值但取不到的情况。(感觉不太严谨,感性理解就好((

补充:可导一定连续,连续不一定可导。(“不可导”指导数不存在)
证明:“可导一定连续”的逆否命题为“不连续一定不可导”。
由导数的几何意义,不连续处可以作出斜率不同的两条切线,这与 f ′ ( x ) f'(x) f(x)是关于 x x x的一个函数矛盾。所以不连续一定不可导。
y = ∣ x ∣ y=|x| y=x R \R R上连续,但在 x = 0 x=0 x=0处不可导。
因此,可导一定连续,连续不一定可导。

假设某个函数 y = f ( x ) y=f(x) y=f(x) [ a , b ] [a,b] [a,b]上可导,要求函数在 [ a , b ] [a,b] [a,b]上的最值,只要把所有极值和端点的函数值比较,就可以求出函数的最大值和最小值。

证明:取出所有的极值点 x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn。不妨设 x 1 < x 2 < . . . < x n x_1<x_2<...<x_n x1<x2<...<xn
由极值点的定义可知 [ x 1 , x n ] [x_1,x_n] [x1,xn]内的非极值点的函数值都不是最值。
( a , x 1 ) (a,x_1) (a,x1)内有最值点 p p p,则 p p p也为极值点;若 ( x n , b ) (x_n,b) (xn,b)内有最值点 q q q,则 q q q也为极值点。矛盾。
所以 ( a , x 1 ) (a,x_1) (a,x1) ( x n , b ) (x_n,b) (xn,b)内都不可能有最值点。
所以最值点只可能是 a , b a,b a,b x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn

由此,可以搞一些奇怪的事情。
求证:当 ∣ x ∣ ≤ 2 |x|\le 2 x2时, ∣ x 3 − 3 x ∣ ≤ 2 |x^3-3x|\le 2 x33x2
证明:令 f ( x ) = x 3 − 3 x f(x)=x^3-3x f(x)=x33x,则 f ′ ( x ) = 3 x 2 − 3 f'(x)=3x^2-3 f(x)=3x23
f ′ ( x ) = 0 f'(x)=0 f(x)=0时, x = 1 x=1 x=1 − 1 -1 1。故 1 , − 1 1,-1 1,1可能为 f ( x ) f(x) f(x)的极值点。 f ( − 1 ) = 2 , f ( 1 ) = − 2 f(-1)=2,f(1)=-2 f(1)=2,f(1)=2
又因为 x ∈ [ − 2 , 2 ] x\in[-2,2] x[2,2] f ( − 2 ) = − 2 , f ( 2 ) = 2 f(-2)=-2,f(2)=2 f(2)=2,f(2)=2
所以在 [ − 2 , 2 ] [-2,2] [2,2]内, f ( x ) f(x) f(x)最小值为 − 2 -2 2,最大值为 2 2 2
所以当 ∣ x ∣ ≤ 2 |x|\le 2 x2时, ∣ x 3 − 3 x ∣ ≤ 2 |x^3-3x|\le 2 x33x2

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值