以前写的学习笔记:传送门
但是之前写的比较杂乱,这里重制一下
问题背景
假设我们要维护一个数据结构,支持插入、删除、查询某个值的排名,查询第
k
k
k大的值等操作。
最直接的想法是用二叉搜索树,也就是左子树权值<根节点权值<右子树权值的数据结构。查询时,如果目标值小于根节点就往左走,否则往右走。
但是二叉搜索树的深度是没法保证的,树高可以达到
O
(
n
)
O(n)
O(n)级别,这样我们的操作都是
O
(
n
)
O(n)
O(n)的。
因此这里我们需要使用平衡树,通过一些操作来维持树的平衡,让单次操作变成
O
(
log
n
)
O(\log n)
O(logn)的复杂度。
旋转操作
我们看下面这棵二叉搜索树,它的权值满足:X<B<Y<A<C。
假设我们想要把B节点旋转到根节点,我们先把B往上提起来:
然后为了维持二叉搜索树的性质,根据X<B<Y<A<C的权值关系,我们把Y连到A上:
上面演示的是右旋(zig)操作,左旋(zag)类似,对A节点左旋就得到原来的树。
(具体实现的时候不用纠结是左旋还是右旋,可以通过同一个rotate函数旋转,见实现细节部分)
这样我们就把B节点往上旋转了一次,使它的深度减少了1。
我们不断旋转目标节点,直到旋转到根的这一过程,称为伸展(splay)。
双旋操作
在把一个节点一直转到根(即splay操作)的过程中,如果我们只是一直旋转同一个节点(即单旋),我们发现这样没法保证树高维持在平均
O
(
log
n
)
O(\log n)
O(logn)。
我们需要进行双旋操作。假设需要旋转的节点是X,X的父节点为P。假如P是根节点,那只需要旋转X就可以了,比较简单。主要讨论P不是根节点的两种情况:
1.X与P所在分支反向(即X和P一个是左孩子,一个是右孩子)
这种情况我们旋转X两次就可以了。由于X和P所在分支方向相反,所以这两次旋转一次是左旋,一次是右旋。
2.X与P所在分支同向(即X和P同为左孩子或右孩子)
如果这里还是旋转X两次,就会导致上面提到的问题,我们的树高没法控制。
所以这种情况我们要先旋转P,再旋转X。
总结:同向先转父节点,反向转两次自己。
时间复杂度分析
这部分可以全部跳过,只需要知道均摊复杂度为 O ( log n ) O(\log n) O(logn)即可。
均摊时间复杂度介绍
均摊时间复杂度,其实就是每一次操作平均下来的复杂度。在多次操作中,一些操作用时比较长,另一些操作用时比较短,我们需要计算所有复杂度加起来除以操作数得到的结果。
在splay树中,我们把“将任意一个节点旋转到根节点”称为一次操作。
单次操作的复杂度最高为
O
(
n
)
O(n)
O(n),但是总的均摊复杂度为
O
(
log
n
)
O(\log n)
O(logn)。
均摊时间复杂度计算
这个在以前写的学习笔记的最后部分有介绍,但是写得很乱。我们这里介绍势能分析方法。
假设我们有
m
m
m个操作,开销分别为
c
1
,
c
2
,
.
.
.
,
c
m
c_1,c_2,...,c_m
c1,c2,...,cm。那么这
m
m
m次操作的总复杂度为
∑
i
=
1
m
c
i
\sum\limits_{i=1}^{m}c_i
i=1∑mci,单次操作的复杂度为
∑
i
=
1
m
c
i
m
\frac{\sum\limits_{i=1}^mc_i}{m}
mi=1∑mci。
通常
∑
i
=
1
m
c
i
\sum\limits_{i=1}^mc_i
i=1∑mci是不太好算的,因此我们可以引入一个势能函数
Φ
\Phi
Φ(这个势能函数是我们根据具体问题设计的,不是一个固定的函数),
Φ
(
D
i
)
\Phi(D_i)
Φ(Di)表示第
i
i
i次操作之后数据结构的“势能”。
定义
t
i
=
c
i
+
Φ
(
D
i
)
−
Φ
(
D
i
−
1
)
t_i=c_i+\Phi(D_i)-\Phi(D_{i-1})
ti=ci+Φ(Di)−Φ(Di−1),表示一种操作的开销与引起的势能变化之和。
那么
∑
i
=
1
m
t
i
=
∑
i
=
1
m
(
c
i
+
Φ
(
D
i
)
−
Φ
(
D
i
−
1
)
)
=
∑
i
=
1
m
c
i
+
Φ
(
D
m
)
−
Φ
(
D
0
)
\sum\limits_{i=1}^mt_i=\sum\limits_{i=1}^m(c_i+\Phi(D_i)-\Phi(D_{i-1}))=\sum\limits_{i=1}^mc_i+\Phi(D_m)-\Phi(D_0)
i=1∑mti=i=1∑m(ci+Φ(Di)−Φ(Di−1))=i=1∑mci+Φ(Dm)−Φ(D0)。
只要我们合理地设计这个
Φ
\Phi
Φ,使得
∑
i
=
1
m
t
i
\sum\limits_{i=1}^mt_i
i=1∑mti能算出来,而且
Φ
(
D
m
)
≥
Φ
(
D
0
)
\Phi(D_m)\ge\Phi(D_0)
Φ(Dm)≥Φ(D0),我们就可以得到
∑
i
=
1
m
c
i
≤
∑
i
=
1
m
t
i
\sum\limits_{i=1}^mc_i\le\sum\limits_{i=1}^mt_i
i=1∑mci≤i=1∑mti,并把
∑
i
=
1
m
t
i
m
\frac{\sum\limits_{i=1}^mt_i}{m}
mi=1∑mti当作实际上的单次时间复杂度(即均摊复杂度,amortized cost)。
splay均摊复杂度分析
下面分析过程中,
log
\log
log的底数都为2(e.g.
log
1024
=
10
\log 1024 = 10
log1024=10)。
我们定义splay树中某个节点
x
x
x的子树大小为
S
(
x
)
S(x)
S(x),势能
R
(
x
)
=
log
S
(
x
)
R(x)=\log S(x)
R(x)=logS(x)。(S代表size,R代表rank)
整棵树的势能
Φ
(
T
)
=
∑
i
∈
T
R
(
i
)
=
∑
i
∈
T
log
S
(
i
)
\Phi(T)=\sum\limits_{i\in T}R(i)=\sum\limits_{i\in T}\log S(i)
Φ(T)=i∈T∑R(i)=i∈T∑logS(i)。
在将某个节点X splay到根节点的过程中,总共有3种情况:(设X的父亲为P)
1.P为根节点,则旋转X。
2.X和P同向,先旋转P,再旋转X。
3.X和P反向,旋转两次X。
其中第一种情况最多发生一次,因为发生之后X就到根节点了。
设第
i
i
i次旋转的均摊复杂度为
t
i
t_i
ti,则一次splay操作的复杂度为
∑
t
i
\sum t_i
∑ti。
我们希望证明后两种情况旋转一次的
t
i
≤
3
(
R
2
(
X
)
−
R
1
(
X
)
)
t_i\le3(R_2(X)-R_1(X))
ti≤3(R2(X)−R1(X)),第一种
t
i
≤
3
(
R
2
(
X
)
−
R
1
(
X
)
)
+
1
t_i\le 3(R_2(X)-R_1(X))+1
ti≤3(R2(X)−R1(X))+1。
第一种情况:P为根节点,旋转X。
这种情况,
c
i
=
1
c_i=1
ci=1,只有X和P节点的势能发生了变化(其它节点的子树大小不变)
那么
t
i
=
c
i
+
Φ
(
T
2
)
−
Φ
(
T
1
)
=
1
+
R
2
(
X
)
−
R
1
(
X
)
+
R
2
(
P
)
−
R
1
(
P
)
t_i=c_i+\Phi(T_2)-\Phi(T_1)=1+R_2(X)-R_1(X)+R_2(P)-R_1(P)
ti=ci+Φ(T2)−Φ(T1)=1+R2(X)−R1(X)+R2(P)−R1(P)
由于
R
2
(
P
)
<
R
1
(
P
)
R_2(P)<R_1(P)
R2(P)<R1(P),所以
t
i
<
1
+
R
2
(
X
)
−
R
1
(
X
)
≤
1
+
3
(
R
2
(
X
)
−
R
1
(
X
)
)
t_i<1+R_2(X)-R_1(X)\le 1+3(R_2(X)-R_1(X))
ti<1+R2(X)−R1(X)≤1+3(R2(X)−R1(X))
第二种情况:X和P同向,先旋转P,再旋转X。
这里旋转了两次,所以
c
i
=
2
c_i=2
ci=2。另外,X,P,G节点的势能发生了变化。
t
i
=
2
+
Φ
(
T
2
)
−
Φ
(
T
1
)
=
2
+
R
2
(
X
)
−
R
1
(
X
)
+
R
2
(
P
)
−
R
1
(
P
)
+
R
2
(
G
)
−
R
1
(
G
)
t_i=2+\Phi(T_2)-\Phi(T_1)=2+R_2(X)-R_1(X)+R_2(P)-R_1(P)+R_2(G)-R_1(G)
ti=2+Φ(T2)−Φ(T1)=2+R2(X)−R1(X)+R2(P)−R1(P)+R2(G)−R1(G)
这里
R
2
(
X
)
=
R
1
(
G
)
R_2(X)=R_1(G)
R2(X)=R1(G),所以
t
i
=
2
+
R
2
(
P
)
+
R
2
(
G
)
−
R
1
(
X
)
−
R
1
(
P
)
t_i=2+R_2(P)+R_2(G)-R_1(X)-R_1(P)
ti=2+R2(P)+R2(G)−R1(X)−R1(P)。
注意到(注意不到怎么办?):
2
R
2
(
X
)
−
R
2
(
G
)
−
R
1
(
X
)
=
log
S
2
(
X
)
2
S
2
(
G
)
S
1
(
X
)
=
log
(
S
2
(
G
)
+
S
1
(
X
)
+
1
)
2
S
2
(
G
)
S
1
(
X
)
2R_2(X)-R_2(G)-R_1(X)=\log \frac{S_2(X)^2}{S_2(G)S_1(X)}=\log\frac{(S_2(G)+S_1(X)+1)^2}{S_2(G)S_1(X)}
2R2(X)−R2(G)−R1(X)=logS2(G)S1(X)S2(X)2=logS2(G)S1(X)(S2(G)+S1(X)+1)2。
令
a
=
S
2
(
G
)
,
b
=
S
1
(
X
)
a=S_2(G),b=S_1(X)
a=S2(G),b=S1(X),则
2
R
2
(
X
)
−
R
2
(
G
)
−
R
1
(
X
)
=
log
(
a
+
b
+
1
)
2
a
b
≥
log
(
a
+
b
)
2
a
b
≥
log
4
=
2
2R_2(X)-R_2(G)-R_1(X)=\log\frac{(a+b+1)^2}{ab}\ge\log\frac{(a+b)^2}{ab}\ge\log 4=2
2R2(X)−R2(G)−R1(X)=logab(a+b+1)2≥logab(a+b)2≥log4=2。
因此:
t
i
≤
(
2
R
2
(
X
)
−
R
2
(
G
)
−
R
1
(
X
)
)
+
R
2
(
P
)
+
R
2
(
G
)
−
R
1
(
X
)
−
R
1
(
P
)
t_i\le (2R_2(X)-R_2(G)-R_1(X))+R_2(P)+R_2(G)-R_1(X)-R_1(P)
ti≤(2R2(X)−R2(G)−R1(X))+R2(P)+R2(G)−R1(X)−R1(P)
=
2
R
2
(
X
)
−
2
R
1
(
X
)
+
R
2
(
P
)
−
R
1
(
P
)
=2R_2(X)-2R_1(X)+R_2(P)-R_1(P)
=2R2(X)−2R1(X)+R2(P)−R1(P)
又由于
R
2
(
P
)
≤
R
2
(
X
)
,
R
1
(
P
)
≥
R
1
(
X
)
R_2(P)\le R_2(X),R_1(P)\ge R_1(X)
R2(P)≤R2(X),R1(P)≥R1(X),
所以
t
i
≤
3
(
R
2
(
X
)
−
R
1
(
X
)
)
t_i\le 3(R_2(X)-R_1(X))
ti≤3(R2(X)−R1(X))。
第三种情况:X和P反向,旋转两次X。
类似地,可以得到
t
i
≤
3
(
R
2
(
X
)
−
R
1
(
X
)
)
t_i\le 3(R_2(X)-R_1(X))
ti≤3(R2(X)−R1(X))。
上面我们证明了后两种旋转的
t
i
≤
3
(
R
2
(
X
)
−
R
1
(
X
)
)
t_i\le3(R_2(X)-R_1(X))
ti≤3(R2(X)−R1(X)),第一种
t
i
≤
3
(
R
2
(
X
)
−
R
1
(
X
)
)
+
1
t_i\le 3(R_2(X)-R_1(X))+1
ti≤3(R2(X)−R1(X))+1。
由于第一种情况有且仅有一次,所以我们把所有旋转的
t
i
t_i
ti加起来,消去中间项,得到
∑
t
i
=
3
(
R
(
X
′
)
−
R
(
X
)
)
+
1
\sum t_i=3(R(X')-R(X))+1
∑ti=3(R(X′)−R(X))+1。
因为
∑
t
i
\sum t_i
∑ti就表示把一个节点splay到根的均摊复杂度,所以均摊复杂度即为
O
(
log
n
)
O(\log n)
O(logn)。
对于
m
m
m次splay操作,总复杂度为
m
∗
O
(
log
n
)
+
Φ
(
T
m
)
−
Φ
(
T
0
)
m*O(\log n)+\Phi(T_m)-\Phi(T_0)
m∗O(logn)+Φ(Tm)−Φ(T0)。树在成为一条链时势能取到最大值
n
log
n
n\log n
nlogn,所以
m
m
m次splay的总复杂度为
O
(
(
m
+
n
)
log
n
)
O((m+n)\log n)
O((m+n)logn)。其中
n
n
n为节点数。
splay树的操作
不管以什么顺序选节点,我们一个个把它们splay到根,最后每次的均摊复杂度为
O
(
log
n
)
O(\log n)
O(logn)。
因此,无论是插入、删除、查询还是其他操作,我们按二叉查找树的操作进行,然后把目标节点splay到根。
由于插入、删除、查询等操作和splay操作访问的都是一样的节点,所以它们的时间复杂度和splay操作是同一个级别的,都是
O
(
log
n
)
O(\log n)
O(logn)。
实现细节
//splay树定义
struct node {
int father;
int val;
int ch[2]; //左右孩子
} w[Size];
int chk(int x) { //chk(x)=0表示x为左孩子,=1表示x为右孩子
return w[w[x].father].ch[1]==x;
}
void connect(int x,int fa,int k) {
w[x].father=fa;
w[fa].ch[k]=x;
}
void rotate(int x) { //把x往上旋转一次
int y=w[x].father;
int z=w[y].father;
int yson=chk(x),zson=chk(y);
connect(w[x].ch[yson^1],y,yson);
connect(y,x,yson^1);
connect(x,z,zson);
}
void splay(int x,int goal) { //把节点x旋转到goal的孩子的位置,goal=0表示旋转到根
int fa;
while((fa=w[x].father)!=goal) {
if(w[fa].father!=goal) {
if(chk(x)==chk(fa)) {
rotate(fa);
} else {
rotate(x);
}
}
rotate(x);
}
if(!goal) root=x;
}
咕咕