一个一个一个微积分毒瘤题啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊

1.证明:方程 x − tan ⁡ x = 0 x-\tan x=0 xtanx=0有无数个实根。
如果想象一下 y = x y=x y=x y = tan ⁡ x y=\tan x y=tanx的图象,就可以知道在每个 ( k π − π 2 , k π + π 2 ) ( k ∈ Z ) (k\pi-\frac{\pi}{2},k\pi+\frac{\pi}{2}) (k\in Z) (2π,+2π)(kZ)中都有一个交点,这个交点显然就是方程的实根。
因此,证明该方程有无数个实根的时候,设 f ( x ) = x − tan ⁡ x f(x)=x-\tan x f(x)=xtanx,运用零点存在性定理,在每个区间里找出一个大于0的函数值和一个小于0的函数值即可。这里不妨取 k > 0 k>0 k>0
大于0的函数值很好取,令 x 1 = k π x_1=k\pi x1=,则 f ( x 1 ) = k π − tan ⁡ k π = k π > 0 f(x_1)=k\pi-\tan k\pi=k\pi>0 f(x1)=tan=>0
小于0的函数值不好取,假设 x 2 = k π + t ( − π 2 < t < π 2 ) x_2=k\pi+t(-\frac{\pi}{2}<t<\frac{\pi}{2}) x2=+t(2π<t<2π) f ( x 2 ) = ( k π + t ) − tan ⁡ ( k π + t ) < 0 f(x_2)=(k\pi+t)-\tan(k\pi+t)<0 f(x2)=(+t)tan(+t)<0,则 k π + t − tan ⁡ t < 0 k\pi+t-\tan t<0 +ttant<0,即 tan ⁡ t > k π + t \tan t>k\pi+t tant>+t
由于 k π + t < k π + π 2 k\pi+t<k\pi+\frac{\pi}{2} +t<+2π,取 t = arctan ⁡ ( k π + π 2 ) t=\arctan(k\pi+\frac{\pi}{2}) t=arctan(+2π)即可。
f ( x 2 ) = arctan ⁡ ( k π + π 2 ) + k π − ( k π + π 2 ) = arctan ⁡ ( k π + π 2 ) − π 2 < 0 f(x_2)=\arctan(k\pi+\frac{\pi}{2})+k\pi-(k\pi+\frac{\pi}{2})=\arctan(k\pi+\frac{\pi}{2})-\frac{\pi}{2}<0 f(x2)=arctan(+2π)+(+2π)=arctan(+2π)2π<0
由于 k π < x 1 < x 2 < k π + π 2 k\pi<x_1<x_2<k\pi+\frac{\pi}{2} <x1<x2<+2π,所以 f ( x ) f(x) f(x) ( k π , k π + π 2 ) ( k > 0 ) (k\pi,k\pi+\frac{\pi}{2})(k>0) (,+2π)(k>0)上至少有一个零点。原命题得证。

2.证明:方程 x − ϵ sin ⁡ x = 1 ( 0 < ϵ < 1 ) x-\epsilon\sin x=1(0<\epsilon<1) xϵsinx=1(0<ϵ<1) R \R R内有且仅有一个实根。
f ( x ) = x − ϵ sin ⁡ x − 1 f(x)=x-\epsilon\sin x-1 f(x)=xϵsinx1,求导得 f ′ ( x ) = 1 − ϵ cos ⁡ x > 0 f'(x)=1-\epsilon\cos x>0 f(x)=1ϵcosx>0,然后 f ( 0 ) = − 1 < 0 , f ( 2 ) = 1 − ϵ sin ⁡ 1 > 0 f(0)=-1<0,f(2)=1-\epsilon\sin 1>0 f(0)=1<0,f(2)=1ϵsin1>0

3.求 lim ⁡ x → a x α − a α x β − a β ( a > 0 , β ≠ 0 ) \large\lim\limits_{x\to a}\frac{x^\alpha-a^\alpha}{x^\beta-a^\beta}(a>0,\beta\not=0) xalimxβaβxαaα(a>0,β=0)
如果 α , β \alpha,\beta α,β均为整数,那么可以通过n次方相减的公式上下消掉 x − a x-a xa。但如果 α , β \alpha,\beta α,β不是整数,这个方法就没法做了。
注意到无穷小量中有一个定理(苏德矿版定理1.17),若 lim ⁡ x → x 0 f ( x ) = A \lim\limits_{x\to x_0}f(x)=A xx0limf(x)=A,则 f ( x ) = A + α ( x ) f(x)=A+\alpha(x) f(x)=A+α(x),其中 α ( x ) \alpha(x) α(x)是无穷小量。
因此由 lim ⁡ x → a x = a \lim\limits_{x\to a}x=a xalimx=a,可以假设 x = a + γ x=a+\gamma x=a+γ,其中 γ → 0 \gamma\to 0 γ0
原式 = lim ⁡ γ → 0 ( a + γ ) α − a α ( a + γ ) β − a β =\large\lim\limits_{\gamma\to 0}\frac{(a+\gamma)^\alpha-a^\alpha}{(a+\gamma)^\beta-a^\beta} =γ0lim(a+γ)βaβ(a+γ)αaα
到这里发现一个尴尬的情况,就是 α \alpha α不是整数,无法使用二项式展开。
注意到一个等价无穷小: ( 1 + x ) a − 1 ∼ a x ( x → 0 ) (1+x)^a-1\sim ax(x\to 0) (1+x)a1ax(x0)。这里可以提取公因式然后利用这个等价无穷小。
原式 = lim ⁡ γ → 0 a α [ ( 1 + γ a ) α − 1 ] a β [ ( 1 + γ a ) β − 1 ] = lim ⁡ γ → 0 a α α γ a a β β γ a = α β a α − β =\Large\lim\limits_{\gamma\to 0}\frac{a^\alpha[(1+\frac{\gamma}{a})^\alpha-1]}{a^\beta[(1+\frac{\gamma}{a})^\beta-1]}=\lim\limits_{\gamma\to 0}\frac{a^\alpha\alpha\frac{\gamma}{a}}{a^\beta\beta\frac{\gamma}{a}}=\large\frac{\alpha}{\beta}a^{\alpha-\beta} =γ0limaβ[(1+aγ)β1]aα[(1+aγ)α1]=γ0limaββaγaααaγ=βαaαβ

4.求 lim ⁡ x → + ∞ ln ⁡ ( 1 + 3 x ) ln ⁡ ( 1 + 2 x ) \lim\limits_{x\to+\infin}\frac{\ln(1+3^x)}{\ln(1+2^x)} x+limln(1+2x)ln(1+3x)
这道题感觉很怪,貌似没有定理表明能直接拿掉括号里面的+1,于是这样做:
原式 = lim ⁡ x → + ∞ ln ⁡ 3 x + ln ⁡ ( 1 + 1 3 x ) ln ⁡ 2 x + ln ⁡ ( 1 + 1 2 x ) =\large\lim\limits_{x\to+\infin}\frac{\ln3^x+\ln(1+\frac{1}{3^x})}{\ln2^x+\ln(1+\frac{1}{2^x})} =x+limln2x+ln(1+2x1)ln3x+ln(1+3x1)
到这里卡住了,由于上下都是无穷,貌似不能直接用极限的四则运算法则。
不过 ln ⁡ 3 x \ln3^x ln3x是无穷,后面那玩意是0,无穷+0,应该可以直接把0去掉?
如果这里前面不是无穷,那就直接用极限的四则运算法则就可以,前后都可以直接代入。
这里前面是无穷,那0理论上更应该可以直接去掉,但是四则运算法则似乎不支持了,就显得很怪。
mhy提供了一个巧妙思路——上下同乘一个 1 x \frac{1}{x} x1,把无穷转换成有界的量:
原式 = lim ⁡ x → + ∞ 1 x ln ⁡ ( 1 + 3 x ) 1 x ln ⁡ ( 1 + 2 x ) = lim ⁡ x → + ∞ 1 x ln ⁡ ( 1 + 3 x ) lim ⁡ x → + ∞ 1 x ln ⁡ ( 1 + 2 x ) =\large\lim\limits_{x\to+\infin}\frac{\frac{1}{x}\ln(1+3^x)}{\frac{1}{x}\ln(1+2^x)}=\frac{\lim\limits_{x\to+\infin}\frac{1}{x}\ln(1+3^x)}{\lim\limits_{x\to+\infin}\frac{1}{x}\ln(1+2^x)} =x+limx1ln(1+2x)x1ln(1+3x)=x+limx1ln(1+2x)x+limx1ln(1+3x)
先搞分子: lim ⁡ x → + ∞ 1 x ln ⁡ ( 1 + 3 x ) = ln ⁡ lim ⁡ x → + ∞ ( 1 + 3 x ) 1 x = ln ⁡ [ 3 lim ⁡ x → + ∞ ( 1 + 3 x ) 1 x ( 3 x ) 1 x ] \lim\limits_{x\to+\infin}\frac{1}{x}\ln(1+3^x)=\ln\lim\limits_{x\to+\infin}(1+3^x)^\frac{1}{x}=\ln[3\lim\limits_{x\to+\infin}\frac{(1+3^x)^\frac{1}{x}}{(3^x)^\frac{1}{x}}] x+limx1ln(1+3x)=lnx+lim(1+3x)x1=ln[3x+lim(3x)x1(1+3x)x1]
= ln ⁡ [ 3 lim ⁡ x → + ∞ ( 1 3 x + 1 ) 1 x ] = ln ⁡ ( 3 ∗ 1 0 ) = ln ⁡ 3 =\ln[3\lim\limits_{x\to+\infin}(\frac{1}{3^x}+1)^\frac{1}{x}]=\ln(3*1^0)=\ln 3 =ln[3x+lim(3x1+1)x1]=ln(310)=ln3
分母同理,为 ln ⁡ 2 \ln 2 ln2
因此原式 = ln ⁡ 3 ln ⁡ 2 =\frac{\ln 3}{\ln 2} =ln2ln3(谔谔)
//虽然我在作业本上是直接把那个0去掉的(划掉)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
蛋白质是生物体中普遍存在的一类重要生物大分子,由天然氨基酸通过肽键连接而成。它具有复杂的分子结构和特定的生物功能,是表达生物遗传性状的一类主要物质。 蛋白质的结构可分为四级:一级结构是组成蛋白质多肽链的线性氨基酸序列;二级结构是依靠不同氨基酸之间的C=O和N-H基团间的氢键形成的稳定结构,主要为α螺旋和β折叠;三级结构是通过多个二级结构元素在三维空间的排列所形成的一个蛋白质分子的三维结构;四级结构用于描述由不同多肽链(亚基)间相互作用形成具有功能的蛋白质复合物分子。 蛋白质在生物体内具有多种功能,包括提供能量、维持电解质平衡、信息交流、构成人的身体以及免疫等。例如,蛋白质分解可以为人体提供能量,每克蛋白质能产生4千卡的热能;血液里的蛋白质能帮助维持体内的酸碱平衡和血液的渗透压;蛋白质是组成人体器官组织的重要物质,可以修复受损的器官功能,以及维持细胞的生长和更新;蛋白质也是构成多种生理活性的物质,如免疫球蛋白,具有维持机体正常免疫功能的作用。 蛋白质的合成是指生物按照从脱氧核糖核酸(DNA)转录得到的信使核糖核酸(mRNA)上的遗传信息合成蛋白质的过程。这个过程包括氨基酸的活化、多肽链合成的起始、肽链的延长、肽链的终止和释放以及蛋白质合成后的加工修饰等步骤。 蛋白质降解是指食物中的蛋白质经过蛋白质降解酶的作用降解为多肽和氨基酸然后被人体吸收的过程。这个过程在细胞的生理活动中发挥着极其重要的作用,例如将蛋白质降解后成为小分子的氨基酸,并被循环利用;处理错误折叠的蛋白质以及多余组分,使之降解,以防机体产生错误应答。 总的来说,蛋白质是生物体内不可或缺的一类重要物质,对于维持生物体的正常生理功能具有至关重要的作用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值