HDU5183 Negative and Positive (NP) 散列表

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5183

题目大意

有一个共n个数的数组a[1],a[2],a[3],……,a[n](这里我把a0开始转化为了a1开始)。
定义sum(i,j)为a[i]-a[i+1]+a[i+2]-…+(-1)^(j-i)*a[j]。(a^b表示a的b次方)
现在求有没有任何(i,j)使得sum(i,j)=k。

思路一——暴力枚举i和j,暴力计算sum(i,j)

思路一为暴力,时间复杂度O(n^3),用两层for循环遍历,一层for循环计算sum(i,j)。
计算如下:

bool cal() {
    for(int i=1; i<=n; i++) {
        for(int j=i; j<=n; j++) {
            int sum=0;
            for(int k=i; k<=j; k++) {
                if((k-i)&1) {   //k与i奇偶性相同
                    sum+=a[i];
                } else {
                    sum-=a[i];
                }
            }
            if(sum==k) {
                return true;
            }
        }
    }
    return false;
}

然而,由于时间复杂度太高,O(n^3)的会超时,所以还要想出时间复杂度较低的算法。

思路二——暴力枚举i和j,优化计算sum(i,j)

思路二也是暴力的方法,但是sum(i,j)可以不用这么复杂。
因为sum(i,j)=a[i]-a[i+1]+a[i+2]-…+(-1)^(j-i)*a[j]
而sum(i,j+1)=a[i]-a[i+1]+a[i+2]-…+(-1)^(j-i)*a[j]+(-1)^(j-i+1) *a[j+1],
所以可以得到sum(i,j+1)=sum(i,j)+(-1)^(j-i+1) *a[j+1]。
这样就可以少一层循环,避免暴力计算sum(i,j),时间复杂度O(n^2)。
代码就不在这里展示了。

思路三——前缀和并将其放进散列表

思路三:考虑前缀和——
sum[i]表是sum(1,i),即a[1]-a[2]+a[3]-…+(-1)^(i-1)*a[i]。
如果要求sum(i,j),可以考虑把两个前缀和相减,而这里需要分类讨论:
(1)i是奇数,此时
——sum[i-1]=a[1]-a[2]+a[3]-…-a[i-1],
——sum[j]=a[1]-a[2]+a[3]-…+a[i]-…+(-1)^(j-1)*a[j]。
——那么sum(i,j)=sum[j]-sum[i-1]。
(2)i是偶数,此时
——sum[i-1]=a[1]-a[2]+a[3]-…+a[i-1],
——sum[j]=a[1]-a[2]+a[3]-…-a[i]+…+(-1)^(j-1)*a[j]。
——那么sum(i,j)=-(sum[j]-sum[i-1])。
现在要知道是否有sum(i,j)=k,那么只要知道
当i为奇数时是否有sum[j]-sum[i-1]=k,当i为偶数时是否有sum[j]-sum[i-1]=-k即可。
说了这么多话,现在仍然要枚举i和j两个数,还是O(n^2)的时间复杂度,所以考虑使用散列表。
当i为奇数时,只需查找是否有sum[j]=sum[i-1]+k (i<=j)。
则将所有sum[j]都插入散列表,然后在里面查找sum[i-1]+k即可。
当i为偶数时同理查找sum[i-1]-k即可。

空间的优化

由于这里sum[1],sum[2],…,sum[n]都只用了一遍,所以可以学习思路二,用一个sum变量来表示当前的sum[i]。

注意事项

1.虽然所有的数据都在int范围内,但是sum(i,j)可能超过int范围,所以要用long long!!
2.注意初始化和一开始把0插入散列表。

代码

用结构体指针写的链表,比较丑,凑合着看看:

//HDU 5183
#include<stdio.h>
#include<cstring>
using namespace std;
typedef long long ll;               //要用long long
ll read() {                         //快速读入
    ll x=0,f=1;
    char ch=getchar();
    while(ch<'0' || ch>'9') {
        if(ch=='-') f=-1;
        ch=getchar();
    }
    while(ch>='0' && ch<='9') {
        x=10*x+ch-'0';
        ch=getchar();
    }
    return x*f;
}
const int C=500007;                 //取模的C值
struct node {
    ll val;
    node *next;                     //hash表中每个节点都是一个链表
} *hash[(C+1)<<1];
/*由于有负数,所以把负数模C之后再加C使其变为正数*/
bool find(ll p) {                   //在链表中寻找一个数p
    node *a=hash[(p%C+C)%C];
    while(a!=NULL) {
        if(a->val==p)
            return true;
        a=a->next;
    }
    return false;
}
void Hash(ll p) {                   //把p插入到散列表中
    node *tmp=new node;
    tmp->val=p;
    tmp->next=hash[(p%C+C)%C];
    hash[(p%C+C)%C]=tmp;
}
const int Size=1000003;
int n,k;
int a[Size];
void init() {                       //初始化
    n=read(),k=read();
    for(int i=1; i<=n; i++)
        a[i]=read();
    memset(hash,0,sizeof(hash));   //将val重置成0,将next重置成NULL
    Hash(0);                       //注意!要把0放进散列表
}
int main() {
//  freopen("data.txt","r",stdin);
//  freopen("WA.out","w",stdout);
    int t=read(),ans;
    for(int now=1; now<=t; now++) {
        init();
        ll sum=0;
        bool flag=false;
        for(int i=n; i>0; i--) {
            if(i&1) {               //如果i是奇数则a[i]前是正号
                sum+=a[i];
            } else {
                sum-=a[i];
            }
            if(i&1) {
                if(find(sum-k)) {
                    flag=true;
                    ans=i;
                    break;
                }
            } else {
                if(find(sum+k)) {
                    flag=true;
                    ans=i;
                    break;
                }
            }
            Hash(sum);             //把sum插入到散列表中
        }
        if(flag) {
            printf("Case #%d: Yes.\n",now);
        } else {
            printf("Case #%d: No.\n",now);
        }
    }
    return 0;
}
/*
2
1 1
1
2 1
-1 0
*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值