统计学基础知识

统计学基础知识

视频参考:
http://open.163.com/newview/movie/free?pid=M82IC6GQU&mid=M83JBFVGI

笔记参考:
https://www.jianshu.com/p/b509477fba1c
https://www.cnblogs.com/Joeyyoung/p/10212733.html

常见图形

箱线图

  • 在这里插入图片描述

总体与样本

一元

  • 样本

    -在这里插入图片描述

  • 期望E(X)

    随机变量的期望值其实是总体的均值,但有时由于总体样本无限多,用均值计算方法很难计算,故提出期望计算均值的方法.其思想是用频率作为权重计算出所有结果的加权平均值。

  • 总体

    -在这里插入图片描述

多元(矩阵表示)

  • 协方差

    反映的是两个变量间的关系
    正相关,负向关。相互独立
    在这里插入图片描述

方差分析

注意行是指维度,列是指样本

n-1,指样本的个数减一

在这里插入图片描述

随机变量

随机变量通常是一个函数,用于量化随机过程。
随机变量通常用大写字母X,Y,Z等表示,而传统变量通常用小写字母x,y,z表示

区分:
离散型随机变量:只要是能够用我们日常使用的量词可以度量的取值,比如次数,个数,块数等。

连续型随机变量:只要无法用这些量词度量,且取值可以取到小数点2位,3位甚至无限多位的时候。

参考:https://www.jianshu.com/p/b570b1ba92bb

离散型随机变量

明天是否下雨,用随机变量X来表示,它只有0,1两种值即取值有限且不连续,X是离散型随机变量

  • 概率分布

    • 把所有的情况用概率表示出来
  • 概率函数

    • 用函数的形式来表达概率。

      eg:
      pi=P(X=ai)(i=1,2,3,4,5,6)
      在这个函数里,自变量(X)是随机变量的取值,因变量(pi)是取值的概

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值