统计学基础知识
视频参考:
http://open.163.com/newview/movie/free?pid=M82IC6GQU&mid=M83JBFVGI
笔记参考:
https://www.jianshu.com/p/b509477fba1c
https://www.cnblogs.com/Joeyyoung/p/10212733.html
常见图形
箱线图
总体与样本
一元
-
样本
-
-
期望E(X)
随机变量的期望值其实是总体的均值,但有时由于总体样本无限多,用均值计算方法很难计算,故提出期望计算均值的方法.其思想是用频率作为权重计算出所有结果的加权平均值。
-
总体
-
多元(矩阵表示)
-
协方差
反映的是两个变量间的关系
正相关,负向关。相互独立
方差分析
注意行是指维度,列是指样本
n-1,指样本的个数减一
随机变量
随机变量通常是一个函数,用于量化随机过程。
随机变量通常用大写字母X,Y,Z等表示,而传统变量通常用小写字母x,y,z表示
区分:
离散型随机变量:只要是能够用我们日常使用的量词可以度量的取值,比如次数,个数,块数等。
连续型随机变量:只要无法用这些量词度量,且取值可以取到小数点2位,3位甚至无限多位的时候。
参考:https://www.jianshu.com/p/b570b1ba92bb
离散型随机变量
明天是否下雨,用随机变量X来表示,它只有0,1两种值即取值有限且不连续,X是离散型随机变量
-
概率分布
- 把所有的情况用概率表示出来
-
概率函数
-
用函数的形式来表达概率。
eg:
pi=P(X=ai)(i=1,2,3,4,5,6)
在这个函数里,自变量(X)是随机变量的取值,因变量(pi)是取值的概
-