【Hadoop】1.由大数据到Hadoop
1 大数据概论
大数据(BigData) :指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程.优化能力的海量、高增长率和多样化的信息资产。
大数据的特点:
1)Volume(大量)
2)Velocity(高速)
3)Variety(多样)
4)Value(低价值密度)
正是为了解决 —— 海量数据的存储和海量数据的分析计算问题,Hadoop就由此而诞生了。
2 Hadoop
2.1 Hadoop是什么
1)Hadoop是一个由Apache基金会所开发的分布式系统基础架构
2)主要解决,海量数据的存储和海量数据的分析计算问题。
3)广义上来说,HADOOP通常是指一个更广泛的概念——HADOOP生态圈
2.2 Hadoop发展历史
1)Lucene–Doug Cutting开创的开源软件,用java书写代码,实现与Google类似的全文搜索功能,它提供了全文检索引擎的架构,包括完整的查询引擎和索引引擎
2)2001年年底成为apache基金会的一个子项目
3)对于大数量的场景,Lucene面对与Google同样的困难
4)学习和模仿Google解决这些问题的办法 :微型版Nutch
5)可以说Google是hadoop的思想之源(Google在大数据方面的三篇论文)
- GFS —>HDFS
- Map-Reduce —>MR
- BigTable —>Hbase
6)2003-2004年,Google公开了部分GFS和Mapreduce思想的细节,以此为基础Doug Cutting等人用了2年业余时间实现了DFS和Mapreduce机制,使Nutch性能飙升
7)2005 年Hadoop 作为 Lucene的子项目 Nutch的一部分正式引入Apache基金会。2006 年 3 月份,Map-Reduce和Nutch Distributed File System (NDFS) 分别被纳入称为 Hadoop 的项目中
8)名字来源于Doug Cutting儿子的玩具大象
9)Hadoop就此诞生并迅速发展,标志这云计算时代来临
2.3 Hadoop三大发行版本
1)Apache:
官网地址:http://hadoop.apache.org/releases.html
下载地址:https://archive.apache.org/dist/hadoop/common/
2)Cloudera:
官网地址:https://www.cloudera.com/downloads/cdh/5-10-0.html
下载地址:http://archive-primary.cloudera.com/cdh5/cdh/5/
3)Hortonworks:
官网地址:https://hortonworks.com/products/data-center/hdp/
下载地址:https://hortonworks.com/downloads/#data-platform
2.4 Hadoop的优势(4高)
1)高可靠性:Hadoop底层维护多个数据副本,所以即使Hadoop某个计算元素或存储出现故障,也不会导致数据的丢失。
2)高扩展性:在集群间分配任务数据,可方便的扩展数以千计的节点。
3)高效性:在MapReduce的思想下,Hadoop是并行工作的,以加快任务处理速度。
4)高容错性:能够自动将失败的任务重新分配。
3 Hadoop组成
3.1 Hadoop的两种版本
Hadoop有两种:Haddop1.x 和 Hadoop2.x
在Hadoopl .x时代,Hadoop中的MapR educe同时处理业务逻辑运算和资源的调度,耦合性较大。
在Hadoop2.x时代,增加了Yam,Yarn只负责资源的调度,MapReduce只负责运算。
上图各模块的简介如下:
- Hadoop HDFS:一个高可靠、高吞吐量的分布式文件系统。
- Hadoop MapReduce:一个分布式的离线并行计算框架。
- Hadoop YARN:作业调度与集群资源管理的框架。
- Hadoop Common:支持其他模块的工具模块。
3.2 HDFS架构概述
HDFS主要由以下3部分组成
-
NameNode (mm) :存储文件的元数据,如文件名,文件目录结构,文件属性(生成时间、副本数、文件权限),以及每个文件的块列表和块所在的DataNode等。
-
DataNode(dn): 在本地文件系统存储文件块数据,以及块数据的校验和。
-
Secondary NameNode(2mn): 用来监控HDFS状态的辅助后台程序,每隔一段时间获取HDFS元数据的快照。
HDFS主要的工作流程如下:
- Secondary NameNode(2mn)监控NameNode (mm)
- NameNode (mm)对每个数据节点(DataNode)进行数据操作
3.3 YARN架构概述
YARN的工作流程:
- {图1-2步 }: Client端向主进程EesourceManager的ApplicationManager模块提交任务
- {图3-5步 }:ApplicationManager按某策略选中某NodeManager的某Container来执行ApplicationMaster
- {图第6步} :AppliacationMaster根据Schenuler中的资源信息进行分配计算资源
- {图第7步} :ApplicationMaster向选中的NodeManager发送信息进行资源(Container)的调用 (split 根据快进行分片(数据均匀))
- {图第8步} :Container向NodeManager汇报计算进度 (Map+shakking )
- {图第9步}:NodeManager通过心跳包,将这些信息汇报给ApplicationMaster,ApplicationMaster根据汇总的信息,给出任务进度(Reduing )
- (图第10步:):所有任务完成后,将信息一层层向上汇报到ApplicationMaster,ApplicationMaster再将结束信息汇报给ApplicationManager模块,ApplicationManager通告客户端任务结束。
上图部分模块作用:
- ResourceManager(rm):处理客户端请求、启动/监控ApplicationMaster、监控NodeManager、资源分配与调度;
- NodeManager(nm):单个节点上的资源管理、处理来自ResourceManager的命令、处理来自ApplicationMaster的命令;
- ApplicationMaster: 数据切分、为应用程序申请资源,并分配给内部任务、任务监控与容错。
- Container:对任务运行环境的抽象,封装了CPU、内存等多维资源以及环境变量、启动命令等任务运行相关的信息。
3.4 MapReduce架构概述
MapReduce大体上将计算过程分为两个阶段:Map和Reduce
1)Map阶段并行处理输入数据
2)Reduce阶段对Map结果进行汇总
详细流程可以参考下图