函数

  函数是微积分研究的对象。

有界函数

定义:设 y = f ( x ) , x ∈ D y=f(x),x\in D y=f(x),xD, ∃ \exist 常数 N ≤ M N\leq M NM, ∀ x ∈ D \forall x \in D xD,都有 N ≤ f ( x ) ≤ M N\leq f(x) \leq M Nf(x)M,称 f ( x ) f(x) f(x) D D D上的有界函数, N N N称为 f ( x ) f(x) f(x)的一个下界, M M M称为 f ( x ) f(x) f(x)的一个上界。

   ∃ \exist 常数 N N N,都有 N ≤ f ( x ) N\leq f(x) Nf(x),称 f ( x ) f(x) f(x)为有下界函数。
   ∃ \exist 常数 M M M,都有 f ( x ) ≥ M f(x)\geq M f(x)M,称 f ( x ) f(x) f(x)为有上界函数。

几何意义:

有界函数的另一定义,该种定义比较常用
定义: ∃ \exist 常数 M , ∀ x ∈ D M,\forall x\in D M,xD,都有 ∣ f ( x ) ∣ ≤ M ⇔ − M ≤ f ( x ) ≤ M \vert f(x)\vert \leq M \Leftrightarrow -M\leq f(x)\leq M f(x)MMf(x)M,称 y = f ( x ) y=f(x) y=f(x) D D D上有界。

例:证明 f ( x ) = s i n 80 x − 6 c o s 60 x f(x)=sin^{80}x-6cos^{60}x f(x)=sin80x6cos60x有界。
证:由 f ( x ) f(x) f(x)的定义域为 R R R, ∀ x ∈ R \forall x\in R xR
∣ f ( x ) ∣ = ∣ s i n 80 x − 6 c o s 60 x ∣ ≤ ∣ s i n 80 x ∣ + 6 ∣ c o s 60 x ∣ ≤ 1 + 6 = 7 \begin{aligned} \vert f(x)\vert&=\vert sin^{80}x - 6cos^{60}x\vert \\ &\leq\vert sin^{80}x\vert + 6\vert cos^{60}x\vert \\ &\leq1 + 6=7 \end{aligned} f(x)=sin80x6cos60xsin80x+6cos60x1+6=7
f ( x ) f(x) f(x)有界。

例:证明 f ( x ) = x 1 + x 2 s i n x f(x)=\cfrac{x}{1+x^{2}}sinx f(x)=1+x2xsinx有界。
证:定义域是 R R R
a 2 + b 2 ≥ 2 a b a^2+b^2\geq 2ab a2+b22ab
∀ x ∈ R , ∣ f ( x ) ∣ = ∣ x ∣ 1 + ∣ x ∣ 2 ⋅ ∣ s i n x ∣ ≤ 1 2 ( 1 + ∣ x ∣ 2 ) 1 + ∣ x ∣ 2 = 1 2 \begin{aligned} \forall x\in R,\vert f(x)\vert&=\frac{\vert x\vert}{1+\vert x\vert^2}\cdot \vert sinx\vert \\ &\leq \frac{\frac{1}{2}(1+\vert x\vert^2)}{1+\vert x\vert^2}=\frac{1}{2} \end{aligned} xR,f(x)=1+x2xsinx1+x221(1+x2)=21

无界函数

定义: ∀ M > 0 , ∃ x m ∈ D \forall M>0,\exist x_m\in D M>0,xmD,有 ∣ f ( x m ) ∣ > M \vert f(x_m)\vert>M f(xm)>M,称 f ( x ) f(x) f(x) D D D上的无界函数。


例:证明 f ( x ) = 1 x f(x)=\cfrac{1}{\sqrt{x}} f(x)=x 1 ( 0 , 1 ] (0,1] (0,1]上是无界函数。
分析法:要证 B B B成立,只要 A A A成立,指的是 A ⇒ B A\Rightarrow B AB,即 A A A成立是 B B B成立的充分条件
证: ∀ M &gt; 0 \forall M&gt;0 M>0,若要 ∣ f ( x ) ∣ &gt; M \vert f(x)\vert &gt; M f(x)>M成立 ⇔ ∣ 1 x ∣ &gt; M ⇔ 1 x &gt; M &ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace;&ThinSpace; ⇔ 1 x &gt; M 2 ⇔ 0 &lt; x &lt; 1 M 2 \Leftrightarrow\vert\cfrac{1}{\sqrt{x}}\vert &gt; M\Leftrightarrow \cfrac{1}{\sqrt{x}}&gt;M\\ \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\,\,\,\,\, \Leftrightarrow\cfrac{1}{x}&gt;M^2\Leftrightarrow 0&lt;x&lt;\cfrac{1}{M^2} x 1>Mx 1>Mx1>M20<x<M21 0 &lt; x ≤ 1 0&lt;x\leq1 0<x1
x = 1 1 + M 2 ∈ ( 0 , 1 ] , 0 &lt; x &lt; 1 M 2 x=\cfrac{1}{1+M^2} \in (0,1],0 &lt; x &lt; \cfrac{1}{M^2} x=1+M21(0,1],0<x<M21,有 ∣ f ( x ) ∣ &gt; M \vert f(x) \vert &gt; M f(x)>M,知 f ( x ) f(x) f(x) ( 0 , 1 ] (0,1] (0,1]上无界。

  由分析法的要求,只要求上式的右边能推到左边即可,当然如果是互推更好了。

复合函数

定义:设 y = f ( u ) , u ∈ D ( f ) , u = φ ( x ) , u ∈ R ( φ ) y=f(u),u\in D(f),u=\varphi(x),u\in R(\varphi) y=f(u),uD(f),u=φ(x),uR(φ),且 D ( f ) ⋂ R ( φ ) ̸ = ∅ D(f)\bigcap R(\varphi)\not= \varnothing D(f)R(φ)̸=,则称 y = f ( φ ( x ) ) y=f(\varphi(x)) y=f(φ(x)) x x x的复合函数, x x x称为自变量, y y y称为因变量, u u u称为中间变量。 f ( u ) f(u) f(u)称为外层函数或简称外函数, φ ( x ) \varphi(x) φ(x)称为内层函数或简称内函数。

  如果对 D ( f ) D(f) D(f) R ( φ ) R(\varphi) R(φ)不加以限制的话,有可能会产生没有意义的结果,如
y = u , u = − ( 1 + x 2 ) ⇒ 不 加 限 制 y = − ( 1 + x 2 ) y=\sqrt{u},u=-(1+x^2)\xRightarrow{不加限制}y=\sqrt{-(1+x^2)} y=u ,u=(1+x2) y=(1+x2)
上式定义域为空集,没有任何的意义。

  如果 y = f ( φ ( x ) ) y=f(\varphi(x)) y=f(φ(x))的定义域是空集,则不能复合,反之则能复合。

例: y = 2 x , y = x 2 y=2^x,y=x^2 y=2x,y=x2
a y = 2 x y=2^x y=2x是外函数, y = x 2 y=x^2 y=x2是内函数,则复合函数为
y = 2 x 2 y=2^{x^2} y=2x2
b y = 2 x y=2^x y=2x是内函数, y = x 2 y=x^2 y=x2是外函数,则复合函数为
y = ( 2 x ) 2 = 4 x y=(2^x)^2=4^x y=(2x)2=4x

例:求
y = 1 1 1 − x − 1 y=\frac{1}{\cfrac{1}{1-x}-1} y=1x111
的定义域。
错误解法:
y = 1 1 − ( 1 − x ) 1 − x = 1 − x x ⇒ 定 义 域 为 { x : x ∈ R , x ̸ = 0 } y=\frac{1}{\cfrac{1-(1-x)}{1-x}}=\frac{1-x}{x}\Rightarrow定义域为\{x:x\in R,x\not= 0\} y=1x1(1x)1=x1x{x:xR,x̸=0}
正确解法:
1 − x ̸ = 0 且 1 1 − x − 1 ̸ = 0 ⇒ x ̸ = 1 且 x ̸ = 0 ⇒ 定 义 域 为 { x : x ∈ R , x ̸ = 0 , x ̸ = 1 } \begin{aligned} &amp;1-x\not= 0且\frac{1}{1-x}-1\not=0\\ &amp;\Rightarrow x\not=1且x\not=0\\ &amp;\Rightarrow定义域为\{x:x\in R,x\not= 0,x\not=1\} \end{aligned} 1x̸=01x11̸=0x̸=1x̸=0{x:xR,x̸=0,x̸=1}

反函数

定义:设 y = f ( x ) , x ∈ D . ∀ x 1 , x 2 ∈ D y=f(x),x\in D.\forall x_1,x_2\in D y=f(x),xD.x1,x2D x 1 ̸ = x 2 x_1 \not= x_2 x1̸=x2都有 f ( x 1 ) ̸ = f ( x 2 ) . f(x_1)\not= f(x_2). f(x1)̸=f(x2).称为 y = f ( x ) , x ∈ D y=f(x),x\in D y=f(x),xD为一一对应。反之 ∀ y ∈ R ( f ) \forall y\in R(f) yR(f),存在唯一的 x ∈ D x\in D xD(且 f ( x ) = y f(x)=y f(x)=y)与之对应。得到一个定义在 R ( f ) R(f) R(f)上的函数,记作 x = f − 1 ( y ) , x=f^{-1}(y), x=f1(y),称为 y = f ( x ) y=f(x) y=f(x)的反函数。

  反函数的定义域就是函数的值域,这为求函数的值域提供了方法。同理,反函数的值域就是函数的定义域。

  函数 y = f ( x ) y=f(x) y=f(x)与反函数 x = f − 1 ( y ) x=f^{-1}(y) x=f1(y)的图像是一样的,习惯上,自变量用 x x x表示,因变量用 y y y表示,则反函数改写为 y = f − 1 ( x ) y=f^{-1}(x) y=f1(x), y = f ( x ) y=f(x) y=f(x) y = f − 1 ( x ) y=f^{-1}(x) y=f1(x)是关于 y = x y=x y=x对称的。

  若 y = f ( x ) y=f(x) y=f(x)的反函数为 x = φ ( y ) x=\varphi(y) x=φ(y),则 f ( φ ( y ) ) = y f(\varphi(y))=y f(φ(y))=y, φ ( f ( x ) ) = x \varphi(f(x))=x φ(f(x))=x

单调函数

定义:设 y = f ( x ) , x ∈ D , ∀ x 1 , x 2 ∈ D , y=f(x),x\in D,\forall x_1,x_2\in D, y=f(x),xD,x1,x2D, x 1 &lt; x 2 x_1 &lt; x_2 x1<x2都有 f ( x 1 ) ≤ f ( x 2 ) ( f ( x 1 ≥ f ( x 2 ) ) ) f(x_1)\leq f(x_2)(f(x_1 \geq f(x_2))) f(x1)f(x2)(f(x1f(x2))),称 y = f ( x ) y=f(x) y=f(x) D D D上的递增函数(递减函数)。递增,递减函数统称为单调函数。

  若 ∀ x 1 , x 2 ∈ D , \forall x_1,x_2\in D, x1,x2D, x 1 &lt; x 2 , x_1 &lt; x_2, x1<x2,都有 f ( x 1 ) &lt; f ( x 2 ) ( f ( x 1 ) &gt; f ( x 2 ) ) , f(x_1) &lt; f(x_2)(f(x_1)&gt;f(x_2)), f(x1)<f(x2)(f(x1)>f(x2)), y = f ( x ) y=f(x) y=f(x) D D D上的严格单调递增(递减)函数。

  定理:若 y = f ( x ) , x ∈ D y=f(x),x\in D y=f(x),xD是严格单调函数,则必有反函数,且反函数也是严格单调,严格递增函数的反函数也是严格单调递增。但是有反函数其原函数不一定严格单调。

例: y = 1 x , 其 反 函 数 x = 1 y y=\cfrac{1}{x},其反函数x=\cfrac{1}{y} y=x1,x=y1不是单调递增。

基本初等函数

三角函数中:
余切 c o t x = 1 t a n x cotx = \cfrac{1}{tanx} cotx=tanx1
正割 s e c x = 1 c o s x secx = \cfrac{1}{cosx} secx=cosx1
余割 c s c x = 1 s i n x cscx = \cfrac{1}{sinx} cscx=sinx1
重要公式:
1 + t a n 2 x = s e c 2 x 1+tan^2x=sec^2x 1+tan2x=sec2x
1 + c o t 2 x = c s c 2 x 1+cot^2x = csc^2x 1+cot2x=csc2x

   y = s i n x , x ∈ R y=sinx,x\in R y=sinx,xR不是一一对应,它没有反函数,但是设 y = s i n x , x ∈ [ − π 2 , π 2 ] y=sinx,x\in [-\cfrac{\pi}{2},\cfrac{\pi}{2}] y=sinx,x[2π,2π]是严格单调,因此有反函数,记作 x = a r c s i n y , y ∈ [ − 1 , 1 ] x=arcsiny,y\in [-1,1] x=arcsiny,y[1,1],习惯上记作 y = a r c s i n x , x ∈ [ − 1 , 1 ] y=arcsinx,x\in [-1,1] y=arcsinx,x[1,1],值域为 [ − π 2 , π 2 ] [-\cfrac{\pi}{2},\cfrac{\pi}{2}] [2π,2π]

同理:
反余弦, y = a r c c o s x , x ∈ [ − 1 , 1 ] , y ∈ [ 0 , π ] y=arccosx,x\in[-1,1],y\in [0,\pi] y=arccosx,x[1,1],y[0,π]
反正切, y = a r c t a n x , x ∈ ( − ∞ , ∞ ) , y ∈ ( − π 2 , π 2 ) y=arctanx,x\in(-\infty,\infty),y\in(-\cfrac{\pi}{2},\cfrac{\pi}{2}) y=arctanx,x(,),y(2π,2π)
反余切, y = a r c c o t x , x ∈ ( − ∞ , ∞ ) , y ∈ ( 0 , π ) y=arccotx,x\in(-\infty,\infty),y\in(0,\pi) y=arccotx,x(,),y(0,π)

六种函数:
1.常数函数: y = C , x ∈ R y=C,x\in R y=C,xR
2.指数函数: y = a x ( a &gt; 0 , a ̸ = 0 ) , x ∈ R y=a^x(a&gt;0,a\not= 0),x\in R y=ax(a>0,a̸=0),xR
3.对数函数: y = l o g a x ( a &gt; 0 , a ̸ = 1 ) , x ∈ ( 0 , + ∞ ) y=log_ax(a&gt;0,a\not= 1),x\in (0,+\infty) y=logax(a>0,a̸=1),x(0,+)
4.幂函数: y = x a ( a ̸ = 0 ) y=x^a(a\not= 0) y=xa(a̸=0)
5.六种三角函数
6.四个反三角函数
以上六种称为基本初等函数

初等函数

  由基本初等函数经过有限次四则运算或复合运算所得到的函数称为初等函数。由基本初等函数经过有限次四则运算,称为简单函数。

  不是初等函数的函数,称为非初等函数,一般来说,分段函数是非初等函数。

例: f ( x ) = { x 2 , x &lt; 0 l n ( 1 + x ) , x ≥ 0 → f(x)=\begin{cases}x^2,&amp;x&lt;0\\ ln(1+x),&amp;x\geq 0 \end{cases} \rightarrow f(x)={x2,ln(1+x),x<0x0非初等函数

例: f ( x ) = { − x , x ≤ 0 x , x &gt; 0 = ∣ x ∣ = x 2 f(x)=\begin{cases} -x, &amp;x\leq 0 \\ x,&amp;x&gt;0 \end{cases}=\vert x\vert =\sqrt{x^2} f(x)={x,x,x0x>0=x=x2
y = u , u = x 2 y=\sqrt{u},u=x^2 y=u ,u=x2复合得到的函数是初等函数。

例: y = e s i n x + x 2 + 1 1 + x 2 + 3 x 2 y=\cfrac{e^{\sqrt{sinx}}+x^2+1}{\sqrt{1+x^2}+3x^2} y=1+x2 +3x2esinx +x2+1
y = s i n x , y = x , y = e x , y = x 2 , y = 1 , y = 3 y=sinx,y=\sqrt{x},y=e^x,y=x^2,y=1,y=3 y=sinx,y=x ,y=ex,y=x2,y=1,y=3 6 6 6次四则运算, 3 3 3次复合运算得到的,知是一个初等函数。

  学会如果一个函数是复合函数,把它拆成几个基本初等函数或简单函数的复合。

例: y = l n a r c t a n s i n 1 + x 2 y=lnarctansin\sqrt{1+x^2} y=lnarctansin1+x2
是由 y = l n u u = a r c t a n v v = s i n w w = l l = 1 + x 2 y=lnu \quad u=arctanv \quad v=sinw \quad w=\sqrt{l} \quad l=1+x^2 y=lnuu=arctanvv=sinww=l l=1+x2复合得到的。

重要的函数

1.初等函数
s g n x = { − 1 , x &lt; 0 0 , x = 0 1 , x &gt; 0 sgn x=\begin{cases} -1, &amp;x&lt;0 \\ 0, &amp;x=0 \\ 1, &amp;x&gt;0 \end{cases} sgnx=1,0,1,x<0x=0x>0

2.取整函数
∀ x ∈ R , [ x ] \forall x\in R,[x] xR,[x]表示不超过 x x x的最大整数,称为取整函数
y = [ x ] , x ∈ R y=[x],x\in R y=[x],xR

例: [ 3.5 ] = 3 , [ 3 ] = 3 , [ − 3.5 ] = − 4 , [ 2 ] = 1 [3.5]=3,[3]=3,[-3.5]=-4,[\sqrt{2}]=1 [3.5]=3,[3]=3,[3.5]=4,[2 ]=1

性质:
[ x ] ≤ x &lt; [ x ] + 1 [x]\leq x &lt;[x]+1 [x]x<[x]+1 x − 1 &lt; [ x ] ≤ x x-1 &lt; [x] \leq x x1<[x]x

3.狄利克雷函数(Dirichlet)
D ( x ) = { 1 , x 为 有 理 数 0 , x 为 无 理 数 D(x)= \begin{cases} 1,x为有理数 \\ 0,x为无理数 \end{cases} D(x)={1,x0,x
是非初等函数。

4.幂指函数
y = x x , x &gt; 0 = e l n x x = e x l n x \begin{aligned} y&amp;=x^x,x&gt;0\\ &amp;=e^{lnx^x}=e^{xlnx} \end{aligned} y=xx,x>0=elnxx=exlnx
是由 y = e u u = x l n x y=e^u\quad u=xlnx y=euu=xlnx复合的,所以是初等函数。

注:若 A &gt; 0 , A = a l o g a A ( a &gt; 0 , a ̸ = 1 ) A&gt;0,A=a^{log_aA}(a&gt;0,a\not= 1) A>0,A=alogaA(a>0,a̸=1),特别地, a = e , A = e l n A a=e,A=e^{lnA} a=e,A=elnA

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值