DTFT

连续时间傅里叶变换(CTFT)

  连续时间傅里叶变换的定义为:
X ( j Ω ) = ∫ − ∞ ∞ x a ( t ) e − j Ω t d t X(j\Omega)=\int_{-\infty}^{\infty}x_a(t)e^{-j\Omega t}dt X(jΩ)=xa(t)ejΩtdt
其傅里叶反变换为
x a ( t ) = 1 2 π ∫ − ∞ ∞ X ( j Ω ) e j Ω t d Ω x_a(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(j\Omega)e^{j\Omega t}d\Omega xa(t)=2π1X(jΩ)ejΩtdΩ

  一个能量有限的连续时间复信号的总能量 ε x \varepsilon_x εx
ε x = ∫ − ∞ ∞ ∣ x ( t ) ∣ 2 d t = ∫ − ∞ ∞ x ( t ) x ∗ ( t ) d t = ∫ − ∞ ∞ x ( t ) ( 1 2 π ∫ − ∞ ∞ X ( j Ω ) e j Ω t d Ω ) ∗ d t = 1 2 π ∫ − ∞ ∞ X ∗ ( j Ω ) ( ∫ − ∞ ∞ x ( t ) e − j Ω t d t ) d Ω = 1 2 π ∫ − ∞ ∞ X ∗ ( j Ω ) X ( j Ω ) d Ω = 1 2 π ∫ − ∞ ∞ ∣ X ( j Ω ) ∣ 2 d Ω \begin{aligned} \varepsilon_x&=\int_{-\infty}^{\infty}\vert x(t)\vert^2dt=\int_{-\infty}^{\infty}x(t)x^{*}(t)dt \\ &=\int_{-\infty}^{\infty}x(t)(\frac{1}{2\pi}\int_{-\infty}^{\infty}X(j\Omega)e^{j\Omega t}d\Omega)^{*}dt \\ &=\frac{1}{2\pi}\int_{-\infty}^{\infty}X^{*}(j\Omega)(\int_{-\infty}^{\infty}x(t)e^{-j\Omega t}dt) d\Omega \\ &=\frac{1}{2\pi}\int_{-\infty}^{\infty}X^{*}(j\Omega)X(j\Omega)d\Omega=\frac{1}{2\pi}\int_{-\infty}^{\infty}\vert X(j\Omega) \vert^2d\Omega \end{aligned} εx=x(t)2dt=x(t)x(t)dt=x(t)(2π1X(jΩ)ejΩtdΩ)dt=2π1X(jΩ)(x(t)ejΩtdt)dΩ=2π1X(jΩ)X(jΩ)dΩ=2π1X(jΩ)2dΩ
从上面总结出这么一个公式
∫ − ∞ ∞ ∣ x ( t ) ∣ 2 d t = 1 2 π ∫ − ∞ ∞ ∣ X ( j Ω ) ∣ 2 d Ω \int_{-\infty}^{\infty}\vert x(t)\vert^2dt=\frac{1}{2\pi}\int_{-\infty}^{\infty}\vert X(j\Omega) \vert^2d\Omega x(t)2dt=2π1X(jΩ)2dΩ
这个公式称为Parseval定理。

  这个公式的意义说明,信号的能量可以在时域上进行计算,也可以在频域上进行计算,所以把 ∣ X ( j Ω ) ∣ 2 \vert X(j\Omega) \vert^2 X(jΩ)2定义为能量谱密度。

  至于关于连续时间傅里叶变换的一些性质及其常见变换可以参考信号与系统,因为这里的重点是引出离散时间傅里叶变换。

离散时间傅里叶变换(DTFT)

  我们定义离散时间傅里叶变换为
X ( e j w ) = ∑ n = − ∞ ∞ x [ n ] e − j w n X(e^{jw})=\sum_{n=-\infty}^{\infty}x[n]e^{-jwn} X(ejw)=n=x[n]ejwn
  其实我在书上看到这里的时候不太理解为什么离散傅里叶变换要这么定义,其实书上直接给出这么一个公式有一点"马后炮"的感觉,我想知道这个公式为什么这么定义,想知道的是一个设计的过程,这么定义为什么能够给出频谱密度,所以接下来谈谈我的理解。

  说到频谱密度的话,我们其实对连续傅里叶变换比较了解,并且知道为什么连续傅里叶变换为什么能反映连续信号的频谱密度,所以我打算从连续时间信号进行入手。

  考虑离散时间信号 x [ n ] x[n] x[n]是对连续时间信号 x a ( t ) x_a(t) xa(t)的抽样,抽样的周期为 T s T_s Ts,得到抽样信号 x ^ a ( t ) \hat{x}_a(t) x^a(t),假设连续时间信号的傅里叶变换为 X ( j Ω ) X(j\Omega) X(jΩ)(在接下来的表示中,连续时间信号的频域符号用 Ω \Omega Ω表示,离散时间信号频域符号用 w w w表示),那么抽样信号 x ^ a ( t ) \hat{x}_a(t) x^a(t)的傅里叶变换为
x ^ a ( t ) = x a ( t ) ∑ n = − ∞ ∞ δ ( t − n T s ) = ∑ n = − ∞ ∞ x a ( n T s ) δ ( t − n T s ) \hat{x}_a(t)=x_a(t)\sum_{n=-\infty}^{\infty}\delta(t-nT_s)=\sum_{n=-\infty}^{\infty}x_a(nT_s)\delta(t-nT_s) x^a(t)=xa(t)n=δ(tnTs)=n=xa(nTs)δ(tnTs)
由于 δ ( t − n T s ) \delta(t-nT_s) δ(tnTs)的傅里叶变换为 e − j Ω n T s e^{-j\Omega nT_s} ejΩnTs,所以
X ^ ( j Ω ) = ∑ n = − ∞ ∞ x a ( n T s ) e − j Ω n T s \hat{X}(j\Omega)=\sum_{n=-\infty}^{\infty}x_a(nT_s)e^{-j\Omega nT_s} X^(jΩ)=n=xa(nTs)ejΩnTs

  仔细观察这个表达式,虽然从这个表达式中看不出 X ^ a ( j Ω ) \hat{X}_a(j\Omega) X^a(jΩ) X ( j Ω ) X(j\Omega) X(jΩ)的关系,但是敏锐的人已经发现了这个表达式与我们所定义的离散时间傅里叶变换之间的联系,如果用 x [ n ] x[n] x[n]替换 x [ n T s ] x[nT_s] x[nTs](这样的替换显然是合理的),并且令 w = Ω T s w=\Omega T_s w=ΩTs(这个过程也叫作数字频率的归一化),我们就可以得到离散时间傅里叶变换的表达式
X ( e j w ) = ∑ n = − ∞ ∞ x [ n ] e − j w n X(e^{jw})=\sum_{n=-\infty}^{\infty}x[n]e^{-jwn} X(ejw)=n=x[n]ejwn
我们似乎解决了 D T F T DTFT DTFT的由来,但是没有解决为什么 D T F T DTFT DTFT能够表示信号的频谱,为了解决这个问题,我们还是要研究一下 X ^ ( j Ω ) \hat{X}(j\Omega) X^(jΩ),由于
x ^ a ( t ) = x a ( t ) ∑ n = − ∞ ∞ δ ( t − n T s ) \hat{x}_a(t)=x_a(t)\sum_{n=-\infty}^{\infty}\delta(t-nT_s) x^a(t)=xa(t)n=δ(tnTs)
∑ n = − ∞ ∞ δ ( t − n T s ) → C T F T 2 π T s ∑ n = − ∞ ∞ δ ( Ω − n Ω s ) ,   Ω s = 2 π T s \sum_{n=-\infty}^{\infty}\delta(t-nT_s)\xrightarrow{CTFT}\frac{2\pi}{T_s}\sum_{n=-\infty}^{\infty}\delta(\Omega-n\Omega_s), \, \Omega_s=\frac{2\pi}{T_s} n=δ(tnTs)CTFT Ts2πn=δ(ΩnΩs),Ωs=Ts2π

  这个傅里叶变换不熟悉的去翻阅资料,因为在这里推导的话可能会破坏思路的连续性,所以就不进行推导了。所以得到 X ^ ( j Ω ) \hat{X}(j\Omega) X^(jΩ)的另一表达形式
X ^ ( j Ω ) = 1 2 π X ( j Ω ) ∗ 2 π T s ∑ n = − ∞ ∞ δ ( Ω − n Ω s ) = 1 T s ∑ n = − ∞ ∞ X ( j ( Ω − n Ω s ) ) \begin{aligned} \hat{X}(j\Omega)&=\frac{1}{2\pi}X(j\Omega)*\frac{2\pi}{T_s}\sum_{n=-\infty}^{\infty}\delta(\Omega-n\Omega_s)\\ &=\frac{1}{T_s}\sum_{n=-\infty}^{\infty}X(j(\Omega -n\Omega_s)) \end{aligned} X^(jΩ)=2π1X(jΩ)Ts2πn=δ(ΩnΩs)=Ts1n=X(j(ΩnΩs))

  看到这里就明朗了,从表达式上看, X ^ ( j Ω ) \hat{X}(j\Omega) X^(jΩ) X ( j Ω ) X(j\Omega) X(jΩ)的关系为 X ^ ( j Ω ) \hat{X}(j\Omega) X^(jΩ) X ( j Ω ) X(j\Omega) X(jΩ) Ω s \Omega_s Ωs为周期进行周期延拓。如果 Ω s \Omega_s Ωs足够大(如果知道抽样定理,就知道 Ω s ≥ 2 Ω m \Omega_s \geq 2\Omega_m Ωs2Ωm即可, Ω m \Omega_m Ωm x a ( t ) x_a(t) xa(t)的最高频率)使得 X ^ ( j Ω ) \hat{X}(j\Omega) X^(jΩ)没有发生混叠的话,那么 X ( j Ω ) X(j\Omega) X(jΩ)只是 X ^ ( j Ω ) \hat{X}(j\Omega) X^(jΩ)的一个周期。

  根据 X ( e j w ) = X ^ ( j Ω ) ∣ w = Ω T s X(e^{jw})=\hat{X}(j\Omega)\vert_{w=\Omega T_s} X(ejw)=X^(jΩ)w=ΩTs
所以就可以知道为什么 X ( e j w ) X(e^{jw}) X(ejw)为什么可以表示信号的频谱。

  考虑 X ( j Ω ) X(j\Omega) X(jΩ)的频域范围 [ − Ω s 2 , Ω s 2 ] [-\cfrac{\Omega_s}{2},\cfrac{\Omega_s}{2}] [2Ωs,2Ωs]映射到数字角频率的范围,由于
w = Ω T s = 2 π Ω Ω s w=\Omega T_s =2\pi \frac{\Omega}{\Omega_s} w=ΩTs=2πΩsΩ
w w w的范围为
w = 2 π Ω Ω s ∈ [ − π , π ] w=2\pi \frac{\Omega}{\Omega_s}\in[-\pi,\pi] w=2πΩsΩ[π,π]
即模拟频率全部映射到数字角频率的 [ − π , π ] [-\pi,\pi] [π,π]上了,这也是数字角频率叫做归一化数字角频率的原因。

  因为 X ^ ( j Ω ) \hat{X}(j\Omega) X^(jΩ)是一个周期信号,根据 X ( e j w ) = X ^ ( j Ω ) ∣ w = Ω T s X(e^{jw})=\hat{X}(j\Omega)\vert_{w=\Omega T_s} X(ejw)=X^(jΩ)w=ΩTs
所以 X ( j e j w ) X(je^{jw}) X(jejw)也是一个周期信号,其周期为 2 π 2\pi 2π,如下证明
X ( e j ( w + 2 π ) ) = ∑ n = − ∞ ∞ x [ n ] e − j ( w + 2 π ) n = ∑ n = − ∞ ∞ x [ n ] e − j w n = X ( e j w ) X(e^{j(w+2\pi)})=\sum_{n=-\infty}^{\infty}x[n]e^{-j(w+2\pi)n}=\sum_{n=-\infty}^{\infty}x[n]e^{-jwn}=X(e^{jw}) X(ej(w+2π))=n=x[n]ej(w+2π)n=n=x[n]ejwn=X(ejw)

  在 [ − π , π ] [-\pi,\pi] [π,π]上, X ( e j w ) X(e^{jw}) X(ejw)就包含了原模拟频谱的所有信息,所以离散时间傅里叶反变换的公式定义为
x [ n ] = 1 2 π ∫ − π π X ( e j w ) e j w n d w x[n]=\frac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{jw})e^{jwn}dw x[n]=2π1ππX(ejw)ejwndw

  如果对连续时间信号的抽样及其重建感兴趣的话,可以参考连续时间信号的抽样及其重建

对称性质

  在之前我们有定义共轭对称序列 x c s [ n ] = 1 2 ( x [ n ] + x ∗ [ − n ] ) x_{cs}[n]=\frac{1}{2}(x[n]+x^{*}[-n]) xcs[n]=21(x[n]+x[n])以及共轭反对称序列 x c a [ n ] = 1 2 ( x [ n ] − x ∗ [ − n ] ) x_{ca}[n]=\frac{1}{2}(x[n]-x^{*}[-n]) xca[n]=21(x[n]x[n]),同理,我们定义 X c s ( e j w ) = 1 2 ( X ( e j w ) + X ∗ ( e − j w ) ) X_{cs}(e^{jw})=\frac{1}{2}(X(e^{jw})+X^{*}(e^{-jw})) Xcs(ejw)=21(X(ejw)+X(ejw)) X ( e j w ) X(e^{jw}) X(ejw)的共轭对称部分, X c a ( e j w ) = 1 2 ( X ( e j w ) − X ∗ ( e − j w ) ) X_{ca}(e^{jw})=\frac{1}{2}(X(e^{jw})-X^{*}(e^{-jw})) Xca(ejw)=21(X(ejw)X(ejw)) X ( e j w ) X(e^{jw}) X(ejw)的共轭反对称部分。

  假设复序列 x [ n ] x[n] x[n] D T F T DTFT DTFT X ( e j w ) X(e^{jw}) X(ejw),那么 x ∗ [ n ] x^{*}[n] x[n] D T F T DTFT DTFT
∑ n = − ∞ ∞ x ∗ [ n ] e − j w n = ( ∑ n = − ∞ ∞ x [ n ] e − ( − j w n ) ) ∗ = X ∗ ( e − j w ) \sum_{n=-\infty}^{\infty}x^{*}[n]e^{-jwn}=(\sum_{n=-\infty}^{\infty}x[n]e^{-(-jwn)})^{*}=X^{*}(e^{-jw}) n=x[n]ejwn=(n=x[n]e(jwn))=X(ejw)
x [ − n ] x[-n] x[n] D T F T DTFT DTFT
∑ n = − ∞ ∞ x [ − n ] e − j w n = ∑ m = − ∞ ∞ x [ m ] e − ( − j w m ) = X ( e − j w ) \sum_{n=-\infty}^{\infty}x[-n]e^{-jwn}=\sum_{m=-\infty}^{\infty}x[m]e^{-(-jwm)}=X(e^{-jw}) n=x[n]ejwn=m=x[m]e(jwm)=X(ejw)
所以综合以上二者得到 x ∗ [ − n ] x^{*}[-n] x[n] D T F T DTFT DTFT X ∗ ( e j w ) X^{*}(e^{jw}) X(ejw)

  所以该序列实部的 D T F T DTFT DTFT
D T F T [ x r e [ n ] ] = D T F T [ 1 2 ( x [ n ] + x ∗ [ n ] ) ] = 1 2 ( X ( e j w ) + X ∗ ( e − j w ) ) = X c s ( e j w ) DTFT[x_{re}[n]]=DTFT[\frac{1}{2}(x[n]+x^{*}[n])]=\frac{1}{2}(X(e^{jw})+X^{*}(e^{-jw}))=X_{cs}(e^{jw}) DTFT[xre[n]]=DTFT[21(x[n]+x[n])]=21(X(ejw)+X(ejw))=Xcs(ejw)
虚部的 D T F T DTFT DTFT
D T F T [ j x i m [ n ] ] = D T F T [ 1 2 ( x [ n ] − x ∗ [ n ] ) ] = 1 2 ( X ( e j w ) − X ∗ ( e − j w ) ) = X c a ( e j w ) DTFT[jx_{im}[n]]=DTFT[\frac{1}{2}(x[n]-x^{*}[n])]=\frac{1}{2}(X(e^{jw})-X^{*}(e^{-jw}))=X_{ca}(e^{jw}) DTFT[jxim[n]]=DTFT[21(x[n]x[n])]=21(X(ejw)X(ejw))=Xca(ejw)
共轭对称部分的 D T F T DTFT DTFT
D T F T [ x c s [ n ] ] = D T F T [ 1 2 ( x [ n ] + x ∗ [ − n ] ) ] = 1 2 ( X ( e j w ) + X ∗ ( e j w ) ) = X r e ( e j w ) DTFT[x_{cs}[n]]=DTFT[\frac{1}{2}(x[n]+x^{*}[-n])]=\frac{1}{2}(X(e^{jw})+X^{*}(e^{jw}))=X_{re}(e^{jw}) DTFT[xcs[n]]=DTFT[21(x[n]+x[n])]=21(X(ejw)+X(ejw))=Xre(ejw)
共轭反对称部分的 D T F T DTFT DTFT
D T F T [ x c a [ n ] ] = D T F T [ 1 2 ( x [ n ] − x ∗ [ − n ] ) ] = 1 2 ( X ( e j w ) − X ∗ ( e j w ) ) = j X i m ( e j w ) DTFT[x_{ca}[n]]=DTFT[\frac{1}{2}(x[n]-x^{*}[-n])]=\frac{1}{2}(X(e^{jw})-X^{*}(e^{jw}))=jX_{im}(e^{jw}) DTFT[xca[n]]=DTFT[21(x[n]x[n])]=21(X(ejw)X(ejw))=jXim(ejw)


  简单的把上面的公式总结一下
x r e [ n ] ↔ D T F T X c s ( e j w ) \color{red}x_{re}[n]\xleftrightarrow{DTFT}X_{cs}(e^{jw}) xre[n]DTFT Xcs(ejw)
j x i m [ n ] ↔ D T F T X c a ( e j w ) \color{red}jx_{im}[n]\xleftrightarrow{DTFT}X_{ca}(e^{jw}) jxim[n]DTFT Xca(ejw)
x c s [ n ] ↔ D T F T X r e ( e j w ) \color{red}x_{cs}[n]\xleftrightarrow{DTFT}X_{re}(e^{jw}) xcs[n]DTFT Xre(ejw)
x c a [ n ] ↔ D T F T j X i m ( e j w ) \color{red}x_{ca}[n]\xleftrightarrow{DTFT}jX_{im}(e^{jw}) xca[n]DTFT jXim(ejw)
这就是 D T F T DTFT DTFT的一些对称性质。

收敛条件

  从 D T F T DTFT DTFT的表达式看,这是一个无穷级数的求和,所以是有收敛条件的。

  如果如果信号满足
∑ n = − ∞ ∞ ∣ x [ n ] ∣ &lt; ∞ \sum_{n=-\infty}^{\infty}\vert x[n]\vert &lt; \infty n=x[n]<
那么称序列 x [ n ] x[n] x[n]绝对可和,并且由于
∣ X ( e j w ) ∣ = ∣ ∑ n = − ∞ ∞ x [ n ] e − j w n ∣ ≤ ∑ n = − ∞ ∞ ∣ x [ n ] ∣ ∣ e − j w n ∣ &lt; ∞ \vert X(e^{jw})\vert=\vert \sum_{n=-\infty}^{\infty}x[n]e^{-jwn}\vert \leq \sum_{n=-\infty}^{\infty}\vert x[n] \vert\vert e^{-jwn}\vert&lt;\infty X(ejw)=n=x[n]ejwnn=x[n]ejwn<即如果 x [ n ] x[n] x[n]是绝对可和的话,那么 X ( e j w ) X(e^{jw}) X(ejw)一定存在,所以 x [ n ] x[n] x[n]绝对可和是离散时间傅里叶 X ( e j w ) X(e^{jw}) X(ejw)存在的充分条件。这种收敛称为一致收敛。

  考虑另一种收敛为均方收敛,有的信号不是绝对可和信号,但是
∑ n = − ∞ ∞ ∣ x [ n ] ∣ 2 &lt; ∞ \sum_{n=-\infty}^{\infty}\vert x[n]\vert^2 &lt; \infty n=x[n]2<
该种收敛不是一致收敛,所以会产生 G i b b s Gibbs Gibbs现象。

  另一信号是既不是绝对可和信号,也不是平方可和信号(比如常数,单位阶跃信号 μ [ n ] \mu[n] μ[n]),为了定义其傅里叶变换,引入了狄拉克函数 δ ( t ) \delta(t) δ(t),关于狄拉克函数在信号与系统中有详细介绍,这里不多讲。

常见DTFT变换对

1 δ [ n ] ↔ D T F T 1 \delta[n]\xleftrightarrow{DTFT}1 δ[n]DTFT 1
证明:
∑ n = − ∞ ∞ δ [ n ] e − j w n = 1 \sum_{n=-\infty}^{\infty}\delta[n]e^{-jwn}=1 n=δ[n]ejwn=1

2
1 , ( − ∞ &lt; n &gt; ∞ ) ↔ D T F T ∑ k = − ∞ ∞ 2 π δ ( w + 2 π k ) 1,(-\infty &lt; n &gt; \infty)\xleftrightarrow{DTFT}\sum_{k=-\infty}^{\infty}2\pi \delta(w+2\pi k) 1,(<n>)DTFT k=2πδ(w+2πk)
证明:由于常数1既不是绝对可和序列,也不是平方可和序列,所以其傅里叶变换为带有狄拉克函数,证其傅里叶变换比较困难,我绝对从其反变换入手:
1 2 π ∫ − π π ∑ k = − ∞ ∞ 2 π δ ( w + 2 π k ) d w = 1 \frac{1}{2\pi}\int_{-\pi}^{\pi}\sum_{k=-\infty}^{\infty}2\pi \delta(w+2\pi k)dw=1 2π1ππk=2πδ(w+2πk)dw=1

3
μ [ n ] ↔ D T F T 1 1 − e − j w + ∑ k = − ∞ ∞ π δ ( w + 2 π k ) \mu[n]\xleftrightarrow{DTFT}\frac{1}{1-e^{-jw}}+\sum_{k=-\infty}^{\infty}\pi \delta(w+2\pi k) μ[n]DTFT 1ejw1+k=πδ(w+2πk)
证明: μ [ n ] \mu[n] μ[n]既不是绝对可和序列,也不是平方可和序列,还是得从另外的方法去证,将 μ [ n ] \mu[n] μ[n]分解为偶部和奇部,则其偶部为
y e v [ n ] = 1 2 ( μ [ n ] + μ [ − n ] ) = 1 2 + 1 2 δ [ n ] y_{ev}[n]=\frac{1}{2}(\mu[n]+\mu[-n])=\frac{1}{2}+\frac{1}{2}\delta[n] yev[n]=21(μ[n]+μ[n])=21+21δ[n]
其傅里叶变换为
Y e v ( e j w ) = ∑ k = − ∞ ∞ π δ ( w + 2 π k ) + 1 2 Y_{ev}(e^{jw})=\sum_{k=-\infty}^{\infty}\pi \delta(w+2\pi k)+\frac{1}{2} Yev(ejw)=k=πδ(w+2πk)+21
其奇部为
y o d [ n ] = 1 2 ( μ [ n ] − μ [ − n ] ) = 1 2 ( 2 μ [ n ] − ( μ [ n ] + μ [ − n ] ) ) = μ [ n ] − 1 2 − 1 2 δ [ n ] y_{od}[n]=\frac{1}{2}(\mu[n]-\mu[-n])=\frac{1}{2}(2\mu[n]-(\mu[n]+\mu[-n]))=\mu[n]-\frac{1}{2}-\frac{1}{2}\delta[n] yod[n]=21(μ[n]μ[n])=21(2μ[n](μ[n]+μ[n]))=μ[n]2121δ[n]
所以
y o d [ n ] − y o d [ n − 1 ] = 1 2 ( δ [ n ] + δ [ n − 1 ] ) y_{od}[n]-y_{od}[n-1]=\frac{1}{2}(\delta[n]+\delta[n-1]) yod[n]yod[n1]=21(δ[n]+δ[n1])
⇒ ( 1 − e − j w ) Y o d ( e j w ) = 1 2 ( 1 + e − j w ) \Rightarrow (1-e^{-jw})Y_{od}(e^{jw})=\frac{1}{2}(1+e^{-jw}) (1ejw)Yod(ejw)=21(1+ejw)
⇒ Y o d ( e j w ) = 1 2 1 + e j w 1 − e j w = − 1 2 + 1 1 − e j w \Rightarrow Y_{od}(e^{jw})=\frac{1}{2}\frac{1+e^{jw}}{1-e^{jw}}=-\frac{1}{2}+\frac{1}{1-e^{jw}} Yod(ejw)=211ejw1+ejw=21+1ejw1
所以
μ [ n ] → D T F T Y e v ( e ( j w ) ) + Y o d ( e j w ) = 1 1 − e − j w + ∑ k = − ∞ ∞ π δ ( w + 2 π k ) \mu[n]\xrightarrow{DTFT}Y_{ev}(e^(jw))+Y_{od}(e^{jw})=\frac{1}{1-e^{-jw}}+\sum_{k=-\infty}^{\infty}\pi \delta(w+2\pi k) μ[n]DTFT Yev(e(jw))+Yod(ejw)=1ejw1+k=πδ(w+2πk)

4
e j w 0 n ↔ D T F T ∑ k = − ∞ ∞ 2 π δ ( w − w 0 + 2 π k ) e^{jw_0n}\xleftrightarrow{DTFT}\sum_{k=-\infty}^{\infty}2\pi \delta(w-w_0+2\pi k) ejw0nDTFT k=2πδ(ww0+2πk)
证明:
1 → D T F T ∑ n = − ∞ ∞ e − j w n = ∑ k = − ∞ ∞ 2 π δ ( w + 2 π k ) 1\xrightarrow{DTFT}\sum_{n=-\infty}^{\infty}e^{-jwn}=\sum_{k=-\infty}^{\infty}2\pi \delta(w+2\pi k) 1DTFT n=ejwn=k=2πδ(w+2πk)
e j w 0 n → D T F T ∑ n = − ∞ ∞ e − j ( w − w 0 ) n = ∑ k = − ∞ ∞ 2 π δ ( w − w 0 + 2 π k ) e^{jw_0n}\xrightarrow{DTFT}\sum_{n=-\infty}^{\infty}e^{-j(w-w_0)n}=\sum_{k=-\infty}^{\infty}2\pi \delta(w-w_0+2\pi k) ejw0nDTFT n=ej(ww0)n=k=2πδ(ww0+2πk)

5
α n μ [ n ] , ( ∣ α ∣ &lt; 1 ) ↔ D T F T 1 1 − α e − j w \alpha^n\mu[n],(\vert \alpha \vert &lt; 1)\xleftrightarrow{DTFT}\frac{1}{1-\alpha e^{-jw}} αnμ[n],(α<1)DTFT 1αejw1
证明:
该序列是绝对可和序列,所以可用 D T F T DTFT DTFT的定义直接求和
∑ n = − ∞ ∞ α n μ [ n ] e − j w n = ∑ n = 0 ∞ ( α e − j w ) n = 1 1 − α e − j w \sum_{n=-\infty}^{\infty}\alpha^{n}\mu[n]e^{-jwn}=\sum_{n=0}^{\infty}(\alpha e^{-jw})^n=\frac{1}{1-\alpha e^{-jw}} n=αnμ[n]ejwn=n=0(αejw)n=1αejw1

  • 22
    点赞
  • 67
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
DTFT(离散时间傅里叶变换)是一种数学工具,用于将时域信号转换为频域信号。在MATLAB中,可以使用一些函数来计算和绘制DTFT。 引用中的代码是通过计算离散序列的DTFT并绘制其幅度、实部、虚部和相位部分的图像。首先,定义了一些变量n、x和w来表示离散序列的索引、值和频率。然后,通过计算X = x * exp(-j).^(n'*w)来求得DTFT。接下来,使用subplot函数将四个图像分别绘制在一个2x2的图表中,并使用plot、xlabel、title、grid等函数设置图表的显示和标签。 引用中的代码也是计算和绘制离散序列的DTFT,但是使用了另一种计算方法。通过定义频率变量w和计算X = exp(1i*w) ./ (exp(1i*w) - 0.5*ones(1,501))来求得DTFT。然后,使用subplot函数将四个图像分别绘制在一个2x2的图表中,并使用plot、xlabel、title、ylabel、grid等函数设置图表的显示和标签。 引用中的代码是另一种计算和绘制离散序列的DTFT的方法,并且主要关注观察幅度和相位的对称性。通过定义变量n、w和x来表示离散序列的索引、频率和值。然后,通过计算X = x * (exp(-1i).^(n'*w))来求得DTFT。最后,使用subplot函数将幅度和相位部分的图像分别绘制在一个2x1的图表中,并使用plot、grid、axis、title等函数设置图表的显示和标签。 总之,这些代码片段展示了在MATLAB中计算和绘制离散序列的DTFT的方法,涉及到幅度、实部、虚部和相位部分的计算和图像展示。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值