序列的运算

本文详细介绍了序列的基本运算,包括调制、相乘、相加、时移和反褶。接着深入讨论了卷积的概念,解释了卷积运算的步骤以及如何快速计算卷积值。此外,还阐述了有限长序列卷积的长度计算和用多项式乘法快速求卷积的方法。最后,文章探讨了抽样率转换,解释了内插和抽取的过程,并通过实例进行了说明。
摘要由CSDN通过智能技术生成

基本运算

调制

  两个序列样本值的乘积,指的是将两个序列的样本值逐点对应相乘,从而得到新的序列:
y [ n ] = x [ n ] w [ n ] y[n]=x[n]w[n] y[n]=x[n]w[n]
在一些应用中,序列的乘积也叫做调制,实现该运算的器件称为调制器。

相乘

  一个序列的每个样本值都乘以标量A以产生新的序列
y [ n ] = A x [ n ] y[n]=Ax[n] y[n]=Ax[n]
实现相乘运算的器件称为乘法器。
在这里插入图片描述

相加

  把两个序列的样本值逐点的相加得到新的序列
y [ n ] = x [ n ] + w [ n ] y[n]=x[n]+w[n] y[n]=x[n]+w[n]
实现该运算的器件称为加法器。

时移

  时移运算表现为
y [ n ] = x [ n − N ] y[n]=x[n-N] y[n]=x[nN]
N &gt; 0 N&gt;0 N>0,则称之为延迟运算,若 N &lt; 0 N&lt;0 N<0则称之为超前运算。

  单位延迟为延迟一个单位,即
y [ n ] = x [ n − 1 ] y[n]=x[n-1] y[n]=x[n1]
Z Z Z变换中,延迟一个单位相当于乘以 z − 1 z^{-1} z1,所以在方框图用 z − 1 z^{-1} z1表示延迟一个单位

  同理,单位超前一个单位可以写为
y [ n ] = x [ n + 1 ] y[n]=x[n+1] y[n]=x[n+1]
Z Z Z变换中,超前一个单位相当于乘以 z z z,所以在方框图用 z z z表示超前一个单位

反褶

  序列的反褶表现为
y [ n ] = x [ − n ] y[n]=x[-n] y[n]=x[n]



  下面给出一些序列运算的例子,我将以图形的形式给出

调制

相加

单位延迟

单位超前

反褶

  大多数的应用都是采用上述基本运算的组合。

卷积

   x [ n ] x[n] x[n] h [ n ] h[n] h[n]为两个序列,这两个序列通过卷积后产生新的序列是
y [ n ] = ∑ m = − ∞ ∞ x [ m ] h [ n − m ] y[n]=\sum_{m=-\infty}^{\infty}x[m]h[n-m] y[n]=m=x[m]h[nm]
至于为什么会有卷积和这种运算,在离散时间系统那里详细介绍过,卷积和可以说是信号与系统分析中最重要的运算之一。

  观察卷积的表达式,发现卷积也是由基本运算组成的:首先对 h [ m ] h[m] h[m]进行反褶得到 h [ − m ] h[-m] h[m],然后进行时移运算,由 h [ − m ] h[-m] h[m]得到 h [ − ( m − n ) ] = h [ n − m ] h[-(m-n)]=h[n-m] h[(mn)]=h[nm],然后进行调制运算 x [ m ] h [ n − m ] x[m]h[n-m] x[m]h[nm],最后进行相加运算得到 y [ n ] = ∑ m = − ∞ ∞ x [ m ] h [ n − m ] y[n]=\sum_{m=-\infty}^{\infty}x[m]h[n-m] y[n]=m=x[m]h[nm],所以一个卷积运算是由反褶,时移,调制,相加等基本运算组成的。

  其实在实际的计算,计算过程就是由我上面所说的过程组成,从这里就可以看到,其实做卷积运算是比较麻烦的,在学习变换域时,有更好的办法进行卷积运算。

  卷积和一般也写成 y [ n ] = x [ n ] ∗ y [ n ] = ∑ m = − ∞ ∞ x [ m ] h [ n − m ] y[n]=x[n]*y[n]=\sum_{m=-\infty}^{\infty}x[m]h[n-m] y[n]=x[n]y[n]=m=x[m]h[nm]
我们对上面的式子做一个变换,令 m = n − k m=n-k m=nk,则:
y [ n ] = ∑ k = − ∞ ∞ h [ k ] x [ n − k ] = h [ n ] ∗ x [ n ] y[n]=\sum_{k=-\infty}^{\infty}h[k]x[n-k]=h[n]*x[n] y[n]=k=h[k]x[nk]=h[n]x[n]
所以卷积满足交换律。

不做卷积得到某一项的值

  如何快速展开得到卷积某一项的值,比如想得到 y [ 2 ] y[2] y[2]的值。

  假设 x [ n ] , w [ n ] x[n],w[n] x[n],w[n]的起点都是 0 0 0,那么可以快速写出 y [ 2 ] = x [ 0 ] w [ 2 ] + x [ 1 ] w [ 1 ] + x [ 2 ] w [ 0 ] y[2]=x[0]w[2]+x[1]w[1]+x[2]w[0] y[2]=x[0]w[2]

  • 10
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值