UVa 10755 Garbage Heap
题目大意:
有一个大立方体,由A*B*C个小立方体组成,每个小立方体有一个价值(正负皆可).现在要在大立方体中选择一个子立方体,求价值和最大.
(注意:不能不取小立方体)
题目分析:
如果直接枚举的话:x,y,z上下界和价值和,O(n^9).
试试部分枚举,只枚举x,y上下界,那么就可以用扫描法完成z部分,时间复杂度为O(n^5).
代码:
#include<cstdio>
#include<iostream>
#include<algorithm>
#define rep(i,j,n) for(int i=(j);i<=(n);i++)
using namespace std;
typedef long long ll;
const int maxn=20+5;
const ll INF=1ll<<60;
int a,b,c;//分别对应 x,y,z 坐标
ll A[maxn][maxn][maxn],sum[maxn][maxn][maxn];//sum 二维前缀和
void sum_init()//二维前缀和初始化
{
rep(z,1,c) rep(x,1,a) rep(y,1,b)
sum[x][y][z]=sum[x-1][y][z]+sum[x][y-1][z]-sum[x-1][y-1][z]+A[x][y][z];
}
ll face_sum(int xmin,int xmax,int ymin,int ymax,int z)//求和
{
return sum[xmax][ymax][z]-sum[xmax][ymin-1][z]-sum[xmin-1][ymax][z]+sum[xmin-1][ymin-1][z];
}
ll solve()
{
ll ans=-INF;//初始化成极小值,不能用0,因为可能存在A均为负数的情况
rep(xmin,1,a) rep(xmax,xmin,a)//枚举x坐标上下界
rep(ymin,1,b) rep(ymax,ymin,b) {//枚举y坐标上下界
ll mins=0,tot=0;
rep(z,1,c) {
tot+=face_sum(xmin,xmax,ymin,ymax,z);
ans=max(ans,tot-mins);//注意这句和下句的顺序,若交换
mins=min(mins,tot);//可能会出现不取废料块的情况
}
}
return ans;
}
int main()
{
int T;
scanf("%d",&T);
while(T--) {
scanf("%d%d%d",&a,&b,&c);
rep(x,1,a) rep(y,1,b) rep(z,1,c) scanf("%lld",&A[x][y][z]);
sum_init();
printf("%lld\n",solve());
if(T) printf("\n");
}
return 0;
}