UVa 10755 Garbage Heap (最大价值子立方体+扫描法)

UVa 10755 Garbage Heap

题目大意:

有一个大立方体,由A*B*C个小立方体组成,每个小立方体有一个价值(正负皆可).现在要在大立方体中选择一个子立方体,求价值和最大.
(注意:不能不取小立方体)

题目分析:

如果直接枚举的话:x,y,z上下界和价值和,O(n^9).
试试部分枚举,只枚举x,y上下界,那么就可以用扫描法完成z部分,时间复杂度为O(n^5).

代码:

#include<cstdio>
#include<iostream>
#include<algorithm>

#define rep(i,j,n) for(int i=(j);i<=(n);i++)

using namespace std;

typedef long long ll;
const int maxn=20+5;
const ll INF=1ll<<60;

int a,b,c;//分别对应 x,y,z 坐标 
ll A[maxn][maxn][maxn],sum[maxn][maxn][maxn];//sum 二维前缀和 

void sum_init()//二维前缀和初始化 
{
    rep(z,1,c) rep(x,1,a) rep(y,1,b)
        sum[x][y][z]=sum[x-1][y][z]+sum[x][y-1][z]-sum[x-1][y-1][z]+A[x][y][z];
}

ll face_sum(int xmin,int xmax,int ymin,int ymax,int z)//求和 
{
    return sum[xmax][ymax][z]-sum[xmax][ymin-1][z]-sum[xmin-1][ymax][z]+sum[xmin-1][ymin-1][z];
}

ll solve()
{
    ll ans=-INF;//初始化成极小值,不能用0,因为可能存在A均为负数的情况 
    rep(xmin,1,a) rep(xmax,xmin,a)//枚举x坐标上下界 
        rep(ymin,1,b) rep(ymax,ymin,b) {//枚举y坐标上下界 
            ll mins=0,tot=0;
            rep(z,1,c) {
                tot+=face_sum(xmin,xmax,ymin,ymax,z);
                ans=max(ans,tot-mins);//注意这句和下句的顺序,若交换 
                mins=min(mins,tot);//可能会出现不取废料块的情况 
            }
        }
    return ans;
}

int main()
{
    int T;
    scanf("%d",&T);
    while(T--) {
        scanf("%d%d%d",&a,&b,&c);
        rep(x,1,a) rep(y,1,b) rep(z,1,c) scanf("%lld",&A[x][y][z]);
        sum_init();
        printf("%lld\n",solve());
        if(T) printf("\n");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值