LA 3716 DNA Regions
题目大意:
给两条长度为n的DNA链A和B,找出一段最长的区间使得区间内的突变位置不超过
p%
.即找出尽可能长的区间,使得区间内有不超过
p%
的
x
满足
(
1≤n≤150000,1≤p≤99
).
题目分析:
设sum[i]表示到i位置为止对应字母不同的个数.
那么对应一个合法区间
(l,r]
,须有
sum[r]−sum[l]r−l≤p100
100(sum[r]−sum[l])≤p(r−l)
sum[r]∗100−r∗p≤sum[l]−l∗p
设 K[i]=sum[i]∗100−i∗p ,则若 K[i]≤K[j] ,存在 (j,i] 为合法区间.
解法一(二分):
维护一个K单调递增栈,在栈里进行二分查找.
解法一代码:
//二分
#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=150000+10;
char A[maxn],B[maxn];
int sum[maxn],st[maxn],n,p;
int binary_search(int top,int pos)//在单调栈st中,在[0,top]中找到最靠前大于等于pos的sum值对应编号
{
int L=0,R=top,ans=-1;//-1表示未找到
while(L<=R) {
int mid=(L+R)>>1;
if(sum[pos]<=sum[st[mid]]) ans=mid,R=mid-1;
else L=mid+1;
}
return ans;
}
int main()
{
while(scanf("%d%d",&n,&p)==2&&n) {
scanf("%s%s",A+1,B+1);
int cnt=0;
for(int i=1;i<=n;i++) {
if(A[i]!=B[i]) ++cnt;
sum[i]=cnt*100-i*p;
}
int top=0,ans=0;st[0]=0;
for(int i=1;i<=n;i++) {
int pos=binary_search(top,i);
if(pos>=0) ans=max(ans,i-st[pos]);
if(sum[i]>sum[st[top]]) st[++top]=i;
//若sum[i]<=sum[st[top]],对于后面的点来说,st[top]要比i更能形成合法解,且解比i更优
}
if(ans) printf("%d\n",ans);
else printf("No solution.\n");
}
return 0;
}
解法二(排序):
现将原序列以K值从大到小排序,那么后面的定比前面小,那么若后面的编号小于前面的,就可以形成合法解.
解法二代码:
#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=150000+10;
struct Node {
int id,sum;
bool operator < (const Node& rhs) const {
return sum>rhs.sum||(sum==rhs.sum&&id<rhs.id);//注意sum相等时,id小的在前面
}
}N[maxn];
int n,p;
char A[maxn],B[maxn];
int main()
{
while(scanf("%d%d",&n,&p)==2&&n) {
scanf("%s%s",A+1,B+1);
int cnt=0;
N[0].sum=N[0].id=0;
for(int i=1;i<=n;i++) {
if(A[i]!=B[i]) ++cnt;
N[i].sum=cnt*100-i*p;
N[i].id=i;
}
sort(N,N+n+1);
int id_min=N[0].id,ans=0;
for(int i=1;i<=n;i++)
if(N[i].id<id_min) id_min=N[i].id;//若当前编号比id_min小,更新id_min
else ans=max(ans,N[i].id-id_min);//若可以形成合法解,尝试更新答案
if(ans) printf("%d\n",ans);
else printf("No solution.\n");
}
return 0;
}