分布模型和线性回归——数据分析与R语言 Lecture 3

这篇博客探讨了随机试验的定义及其例子,详细介绍了样本空间、随机事件和概率概念。接着,讨论了R语言中处理各种分布的函数,并讲解了数据描述性分析、多元数据特征、协方差和相关系数的计算。文章重点在于相关性和回归分析的应用,通过实例阐述了它们在理解变量间关系中的重要性,并提出了线性模型的检验标准,包括P值和R平方。
摘要由CSDN通过智能技术生成

随机试验

三个条件
1 可以重复进行
2 不能预知结果
3 知道所有可能的情况

例子
1 投硬币,掷骰子
2 射击命中
3 身高、体重

样本空间

样本空间就是特定随机试验所有可能结果所组成的集合

例子
投硬币
掷骰子
身高体重
成绩

随机事件与必然事件

样本空间的子集称为随机事件
必然事件的例子
对立事件与互斥事件

概率——刻画随机事件出现可能性的指标

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

分布

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

R语言的各种分布函数

在这里插入图片描述

常见的数据描述性分析

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

多元数据的数据特征

在这里插入图片描述

协方差与相关系数计算

在这里插入图片描述

相关性检验

在这里插入图片描述

相关分析与回归分析

变量之间的关系
函数关系:有精确的数学表达式
相关关系:非确定性关系
平行关系:相关分析(一元,多元)
依存关系:回归分析(一元,多元)

相关分析的例子 (重要)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

回归分析的例子 (重要)

在这里插入图片描述

自定义函数 lxy<-function(x,y){n=length(x);sum(x*y)-sum(x)*sum(y)/n}
假设w=a+bh
则有


> b=lxy(h,w)/lxy(h,h)
> a=mean(w)-b*mean(h)
> a
[1] -140.3644
> b
[1] 1.15906
作回归直线
lines(h,a+b*h)

在这里插入图片描述

线性模型更加简单的方法

在这里插入图片描述
在这里插入图片描述

得到模型后进行检验

在这里插入图片描述
**

Pr 为P 值,数值越小,该模型内的参数越合理。
*** 里*越多越合理。
R 为相关系数平方,越接近1 越好。

**
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值