题目
给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环,边权可能为负数。
求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible
。
给定一张边带权的无向图 G=(V,E),其中 V 表示图中点的集合,E 表示图中边的集合,n=|V|,m=|E|。
由 V 中的全部 n 个顶点和 E 中 n−1 条边构成的无向连通子图被称为 G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 G 的最小生成树。
输入格式
第一行包含两个整数 n 和 m。
接下来 m 行,每行包含三个整数 u,v,w,表示点 u 和点 v 之间存在一条权值为 w 的边。
输出格式
共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible
。
数据范围
1≤n≤500,
1≤m≤10^5,
图中涉及边的边权的绝对值均不超过 10000。
输入样例:
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4
输出样例:
6
题解
#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
const int N=510,M=200010;
typedef pair<int ,int> PII;
int n,m;//存储输入的点数、边数
int h[N],e[M],ne[M],w[M],idx;
int res;//记录最小生成树的总权值
int dist[N];//节点i到生成树集合的距离
bool st[N];//是否选入最小生成树
void add(int a,int b,int c){
ne[idx] = h[a];
h[a] = idx;
e[idx] = b;
w[idx]= c;
idx++;
}
int Prim(){
memset(dist,0x3f,sizeof dist);
dist[1] = 0;
priority_queue<PII,vector<PII>,greater<PII>> heap;
heap.push({0,1});
while(heap.size()){
//找到最小距离的点
PII t = heap.top();
heap.pop();
int ver = t. second,distance = t.first;
if(st[ver]){continue;}
st[ver] = true;
res += distance;
//扩展该点
for(int i = h[ver];i != -1;i=ne[i]){
int j = e[i];
if(dist[j] > w[i]){
dist[j] = w[i];
heap.push({dist[j],j});
}
}
}
//遍历查看所有点是否已在最小生成树内
for(int i=1;i<=n;i++){
if(!st[i]){
return 0x3f3f3f3f;
}
}
return res;
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0),cout.tie(0);
memset(h,-1,sizeof h);
cin >> n >> m;
int a,b,c;
while(m--){
cin >> a >> b >> c;
add(a,b,c);
add(b,a,c);
}
int t = Prim();
if(t == 0x3f3f3f3f){
cout << "impossible" << endl;
}else{
cout << t << endl;
}
}