Prim算法求最小生成树(堆优化写法)

 题目

给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环,边权可能为负数。

求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible

给定一张边带权的无向图 G=(V,E),其中 V 表示图中点的集合,E 表示图中边的集合,n=|V|,m=|E|。

由 V 中的全部 n 个顶点和 E 中 n−1 条边构成的无向连通子图被称为 G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 G 的最小生成树。

输入格式

第一行包含两个整数 n 和 m。

接下来 m 行,每行包含三个整数 u,v,w,表示点 u 和点 v 之间存在一条权值为 w 的边。

输出格式

共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible

数据范围

1≤n≤500,
1≤m≤10^5,
图中涉及边的边权的绝对值均不超过 10000。

输入样例:
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4
输出样例:
6

题解

#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
const int N=510,M=200010;
typedef pair<int ,int> PII;
int n,m;//存储输入的点数、边数
int h[N],e[M],ne[M],w[M],idx;
int res;//记录最小生成树的总权值
int dist[N];//节点i到生成树集合的距离
bool st[N];//是否选入最小生成树

void add(int a,int b,int c){
    ne[idx] = h[a];
    h[a] = idx;
    e[idx] = b;
    w[idx]= c;
    idx++;
}

int Prim(){
    memset(dist,0x3f,sizeof dist);
    dist[1] = 0;
    priority_queue<PII,vector<PII>,greater<PII>> heap;
    heap.push({0,1});
    
    while(heap.size()){
        //找到最小距离的点
        PII t = heap.top();
        heap.pop();
        int ver = t. second,distance = t.first;
        if(st[ver]){continue;}
        st[ver] = true;
        res += distance;
        
        //扩展该点
        for(int i = h[ver];i != -1;i=ne[i]){
            int j = e[i];
            if(dist[j] > w[i]){
                dist[j] = w[i];
                heap.push({dist[j],j});
            }
        }
    }
    
    //遍历查看所有点是否已在最小生成树内
    for(int i=1;i<=n;i++){
        if(!st[i]){
            return 0x3f3f3f3f;
        }
    }
    return res;
}

int main(){
    ios::sync_with_stdio(false);
    cin.tie(0),cout.tie(0);
    
    memset(h,-1,sizeof h);
    cin >> n >> m;
    int a,b,c;
    while(m--){
        cin >> a >> b >> c;
        add(a,b,c);
        add(b,a,c);
    }
    int t = Prim();
    if(t == 0x3f3f3f3f){
        cout << "impossible" << endl;
    }else{
        cout << t << endl;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

魏大橙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值